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While k-e solutions for both of these adverse pressure gradient cases are
nearly as close to measurements as k-w solutions, similar results should not be
expected for higher Mach numbers. Many compressible-flow experiments have
been conducted for Mach numbers of 3 and less. Far fewer experiments have been
done at higher Mach numbers. Hence, these results show how a turbulence model
calibrated for the best data available may not apply at higher Mach numbers. The
k-¢ model’s near-wall behavior has a significant impact on model predictions,
and Chien’s model happens to be optimum for these two flows. The Jones-
Launder (1972) and Launder-Sharma (1974) models, for example, predict skin
friction values more than twice the measured values for both flows.
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Figure 5.6: Computed and measured effects of surface cooling on skin friction
Jor a Mach 5 flat-plate boundary layer: — k-~w model, £* = 0; - - - k-w model,
§* = 2; - - - Zhang et al. k-e model; o Van Driest correlation.

Focusing now on effects of surface heat transfer, Figure 5.6 compares com-
puted skin friction with a correlation of measured values [see Kline et al. (1981)
— Flow 8201]. The Wilcox (2006) k-w model is within 4% of the Van Driest
correlation in the absence of compressibility modifications. Using the Wilcox
compressibility modification, Equation (5.83), reduces predicted cs/cy, by up to
15%. The k-¢ model predictions of Zhang et al. (1993) show a similar trend,
with differences from measured values of less than 10%,



274 CHAPTER 5. EFFECTS OF COMPRESSIBILITY

As the final application, we consider compressible flow over roughened flat
plates. Note that this provides a test of the Wilcox (2006) k-w model rough-
surface boundary condition on flows for which it has not been calibrated. Fig-
ure 5.7 compares computed skin friction with the data summarized by Reda,
Ketter and Fan (1974). Computations have been done for Mach numbers of 0,
2 and 5 and dimensionless roughness height, k", ranging from 0 to 100. For
each Mach number, the values of ¢y and the reference smooth-wall skin friction
cocfficient, ¢y, correspond to a momentum-thickness Reynolds number, Reg, of
10%. As shown, computed skin friction falls within experimental data scatter for
the entire range of roughness heights considered in the computations.
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Figure 5.7: Computed and measured effects of surface roughness on skin friction
for compressible flat-plate boundary layers.

The computations also demonstrate consistency with the observation origi-
nally made by Goddard (1959) that “the effect of surface roughness on skin-
friction drag is localized deep within the boundary layer at the surface itself and
is independent of the external flow, i.e., Mach number, per se, is eliminated as a
variable.” Consistent with Goddard’s observation, Mach number has little effect
on predicted c¢/cy,. Additionally, consistent with Reda’s findings, computed
skin friction departs noticeably from the smooth-wall value for £} values near 4
to 5 as opposed to Goddard’s correlation which indicates no effect for k} < 10.
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5.8 Shock-Induced Boundary-Layer Separation

One of the most interesting and challenging CFD problems is the interaction of a
turbulent boundary layer with a shock wave. In this section, we examine some of
the earliest applications, illustrate the profound effect a stress limiter has on k-w
model solutions for shock-separated flows, and discuss a series of applications
ranging from transonic to hypersonic speeds.

5.8.1 The Earliest Applications

The earliest efforts were confined to algebraic models, largely because of the long
computing times required to solve the full Favre-averaged continuity, Navier-
Stokes and energy-conservation equations. The fastest computer of the late
1960’s and early 1970’s was the CDC 7600, a machine that executed at about
1/40*h the speed of a 3-GHz Pentium-D microcomputer. Additionally, the best
compressible-flow numerical algorithms of that era were explicit time-marching
methods that required many thousands of timesteps to achieve a solution.
Wilcox (1974) obtained the first solutions to the Favre-averaged Navier-
Stokes equation, using an advanced turbulence model, for shock-induced sep-
aration of a turbulent boundary layer. This early CFD study included six com-
putations, three for reflection of an oblique shock from a flat plate and three for
flow into a compression comer. The study showed that a two-equation turbu-
lence model could provide a reasonably accurate description of the flowfield for
reflection of an oblique shock from a flat plate. Figure 5.8 compares computed
and measured pitot-pressure, p,, profiles throughout the interaction region. The
quantity p; _ is freestream total pressure, z is streamwise distance along the plate,
xs denotes separation-point location and § is incident boundary-layer thickness.
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Figure 5.8: Computed and measured Pitot-pressure profiles for a Mach 3 shock-
wave/boundary-layer interaction; Saffinan-Wilcox k-w? model; - - - com-

puted separation-bubble dividing streamline; e Reda-Murphy (1972). [From
Wilcox (1974) — Copyright (© AIAA 1974 — Used with permission.]
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However, the numerical flowfields for the three compression corners [Law
(1973)] differ significantly from the experimentally observed flowfields, even
though Mach and Reynolds numbers and shock strength are identical to those of
the flat-plate shock/boundary-layer interaction cases. This is particularly evident
from the surface-pressure variation. Figure 5.9 compares the computed and
measured surface-pressure distributions for two of the shock-wave/boundary-
layer interactions and two of the compression-corner flows.
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Figure 5.9: Computed and measured surface-pressure for Mach 3 shock-
wave/boundary-layer interactions and 26° compression-corner flows computed
with the Saffiman-Wilcox k-w? model. [From Wilcox (1974) — Copyright
© AIAA 1974 — Used with permission.]

To put these computations in proper perspective, note that the turbulence
model used was the Saffman-Wilcox (1974) k-w? model with surface boundary
conditions given by matching to the law of the wall. The numerical algorithm
used was a first-order accurate explicit time-marching procedure. The com-
putations, which were done on 4000-point finite-difference grids and required
about 10000 timesteps to achieve steady-state conditions, took 40 to 50 hours
of UNIVAC 1108 computer time — a commonly-used computer of that era that
executed at about 1/200*h the speed of a 3-GHz Pentium-D microcomputer.

Since that time, computational methods have improved dramatically thanks
to the innovative work of many researchers such as Beam and Warming (1976),
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Steger and Warming (1979), Roe (1981), Van Leer (1982), MacCormack (1985),
and Roache and Salari (1990), to name just a few. As a result of their innovations,
converged solutions for separated flows can often be obtained in a few hundreds
of timesteps or iterations. A two-equation turbulence model computation for
a shock-separated flow using a 50000-point grid and 500 timesteps now takes
about 15 minutes of 3-GHz Pentium-D microcomputer CPU time.

While great advances have been made in developing accurate and efficient
finite-diffcrence algorithms, until recently, far less improvement was made with
turbulence models for such flows. A veritable plethora of CFD researchers in-
cluding Shang, Hankey and Law (1976), Viegas and Horstman (1979), Viegas,
Rubesin and Horstman (1985), Champney (1989), Horstman (1992), Huang and
Liou (1994), Liou and Huang (1996), Knight (1997) and Forsythe (2000) pro-
vides clear substantiation of this claim. They have applied many turbulence
models to shock-separated flows with almost universal results, viz.:

1. too little upstream influence, as shown by pressure starting to rise well
downstream of the measured start of adverse pressure gradient;

2. surface pressure in excess of measured values in the separation bubble;

3. skin friction and heat transfer higher than measured downstream of reat-
tachment;

4. velocity profiles downstream of reattachment that indicate flow decelera-
tion within the boundary layer in excess of corresponding measurements.

On the one hand, using wall functions and the k-¢ model, Viegas, Horstman
and Rubesin (1985) are able to remove Item 3 from this list. On the other hand,
they achieve only modest improvements in the other items. As we will see in this
section, with the aid of a stress limiter, the k-w model removes Items 1, 2 and
half of Item 3 (the skin friction) from the list. While its predictions are closer
to measurements than most other models, it nevertheless displays the symptoms
cited in Item 4, as well as excessive heat transfer downstream of reattachment.
This slow track record of success on the compression-corner problem, which has
persisted for more than three decades, is excellent testimony to the oft quoted
statement that...

Turbulence modeling is the pacing item in CFD.

5.8.2 The Use of Wall Functions for Shock-Separated Flows

Most modern shock-separated computations are done without introducing wall
functions. There is no evidence that the law of the wall holds in separated
regions, and its use via wall functions is therefore a questionable approximation.
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The primary motivation for using wall functions in large scale computations that
require substantial computer resources is in reducing CPU time.

Viegas, Horstman and Rubesin (1985), in effect, create a two-layer turbu-
lence model where their wall functions apply in the sublayer, and the Standard
k-e model applies above the sublayer. While their procedure yields significant
reduction in computing time, numerical results are sensitive to the location of
the grid point closest to the surface, y3 . In fact, there is no obvious convergence
to a well defined limiting value as y5 — 0. Consequently, the value of %3 is
effectively an adjustable parameter in their mode! equations, to be selected by the
user. In practice, it is typical for the user to fix y» at each location, rather than
modify it locally as the solution develops, which would be required to achieve a
constant value of y3. Thus, in practice, y actually varies throughout the flow
in a manner that cannot be determined a priori, so that the sensitivity to its value
is a computational liability.

The sensitivity can be removed by using perturbation methods to devise suit-
able wall functions. Following Wilcox (1989), for example, we can deduce
the following compressible-flow wall functions for the k-w model as given in
Equations (4.36) through (4.42):
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where P* is the dimensionless pressure-gradient parameter defined by
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As with the incompressible wall functions deduced for the k-w model (see Sub-
section 4.7.1), the expansions in Equation (5.126) have been derived assuming
Pt is a small parameter. Using these wall functions, numerical solutions show
very little sensitivity to placement of the grid point closest to the surface, provided
it lies below y+ = 100.

Shih et al. (1999) and Nichols and Nelson (2004) have developed wall func-
tions with attention focused on eliminating sensitivity to the location of 3 .
Consequently, they appear to provide satisfactory results. Nevertheless, keep in
mind that there is virtually no evidence that the law of the wall, upon which wall
functions are based, applies in separated regions.
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5.83 The Next Two Decades of “Progress”

Efforts following the early work of Wilcox (1974) yielded little progress in re-
ducing discrepancies between theory and experiment. Figure 5.10 compares
computed and measured [Settles, Vas and Bogdonoff (1976)] surface pressure
for Mach 3 flow into a 24° compression corner using algebraic models, a one-
equation model and several two-equation models. None of the algebraic, one-
equation or two-equation models provides a satisfactory solution. In more recent
computations, Huang and Liou (1994) show that the RNG k-¢ model [Yakhot
and Orszag (1986)] consistently predicts separation bubbles that are: (a) nearly
double the length of those predicted by the standard version; and (b) much longer
than measured. Also, Forsythe (2000) has shown that Menter’s (1992c) hybrid
k-w/k-¢ model and the Spalart-Allmaras (1992) one-equation model, both of
which have proven to be reliable for incompressible and transonic applications,
predict a separation bubble nearly double the measured size for this flow.
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Figure 5.10: Comparison of computed and measured surface pressure for Mach
3 flow info a 24° compression corner for several turbulence models. [From
Marshall and Dolling (1992) — Copyright © AIAA 1992 — Used with permis-

sion.]



280 CHAPTER 5. EFFECTS OF COMPRESSIBILITY

5.8.4 Effect of the Stress Limiter on Shock-Separated Flows

Coakley (1983) was the first to suggest that shock-separated flows can be more
accurately simulated with the k-w model by simply limiting the magnitude of
the Reynolds shear stress when production of turbulence kinetic energy exceeds
its dissipation. He developed a stress limiter that showed some promise for
improving k-w model predictions. Menter (1992¢), Kandula and Wilcox (1995),
Durbin (1996), and Huang (1999) for example, have subsequently confirmed the
effectiveness of a stress limiter for flow speeds up to the transonic range.

Durbin (1996) and Moore and Moore (1999) have assessed the realizability
of turbulence-energy production predicted using the Boussinesq approximation.
They observe that for flows such as impinging jets and the inviscid, highly-
strained flow approaching a stagnation point, without the assistance of a stress
limiter, the Boussinesq approximation leads to unrealistically high turbulence-
energy levels — levels that are not realized in nature. Moore and Moore propose
the following general relation for limiting the Reynolds stress.

p o _ 2X15:;5:5 + 2208085
;—LT — 5'5 W = max {UJ1 Cow"!-ollﬂ'i-\/ (A]_ +/\2)ﬁ*
(5.128)
Recall that S;; = S;; — 1 Sk.6;;. Table 5.4 lists the values of the constants Co,
Clim, A1 and Ao proposed by several researchers.

Table 5.4: Stress-Limiter Coefficients.

[ Reference [ Co [ Cum [ A1 [ 22 ]
Coakley (1983) 0 1.00 1 0
Durbin (1996) 0 1.03 1 0
Menter (1992¢) 0 1.00 0 1
Moore and Moore (1999) | 2.85 0.75 1 1
Wilcox (2006) 0 08 | 1 | 0

To understand the way in which the stress limiter suppresses the magnitude
of the Reynolds shear stress, we first simplify Equation (5.128) for the most-
commonly used version that has Cy = 0, Ay = 1 and A3 = 0, viz,,

(5.129)

fhr =
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In a shear layer, we know that 25;,5,; ~ (8ii/dy)?. So, Equation (5.129) tells

us that Py 5
B U : pk Ou 5 e
PTay = p,Ta—y == mm{—w-—g?;, (/mig,\/ﬁ pk} (5.130)
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Also, observe that, in the absence of a stress limiter, the ratio of production, Py,
e ¥ i ’ .
to dissipation, Dy, in the turbulence Kinetic energy equation 18

Py _ (pk/w)dii/y 3&/3;:)2
il L (_\/BT; (5.131)

Thus, the stress-limiter modification is such that

PToy = Crim VB bk for {;i e (5.132)
k

Consequently, the stress limiter drives the Reynolds shear stress toward the form
Bradshaw implemented in his one-equation turbulence model (see Section 4.2).
When Ciim = 1, the coefficient C;1 /3% = 0.30, which matches the value
of Bradshaw’s constant, 5. For the Wilcox (2006) k-w model, we find that
CiimV/B* = 0.34.

Interestingly, in a shear layer the turbulence kinetic energy production term
in the Saffman-Wilcox (1974) k-w? model is Px = 0.30pk |8%/8y|. Hence,
production of k is constrained although the eddy viscosity is not. This is the
reason Wilcox and Traci (1974) were able to accurately compute the increase in
turbulence kinetic energy approaching a stagnation point. This is not possible
with a two-equation turbulence model that does not implement a stress limiter
[Durbin (1996)] because the strain-rate field is such that P /Dy, is typically in
excess of 100. Although experimental data are not shown in Figure 5.11, the
computed amplification is consistent with the measurements of Bearman (1972).
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Figure 5.11: Variation of turbulence kinetic energy approaching a stagnation
point: —— Saffman-Wilcox k-w* modej, [From Wilcox and Traci (1974) —

Copyright © AIAA 1974 — Used With permission.]
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Figure 5.12 shows the dramatic improvement for Mach 0.8 flow past an
NACA 0012 airfoil at 2.26° angle of attack. The solid curves identified as
“original” correspond to the Wilcox (1988a) k-w model, which does not use a
stress limiter. The dashed curves identified as “SST” correspond to the same
model with a stress limiter applied with Cj;,,, = 1. The most dramatic dif-
ference is the location of the shock. Without the stress-limiter, the predicted
shock location is farther downstream than the measured location. Adding the
stress limiter increases the size of the separation bubble on the upper surface
of the airfoil, causing the computed shock location to lie much closer to the
experimentally-observed location.
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Figure 5.12: Compariscn of computed and measured surface pressure for tran-
sonic flow past an NACA 0012 airfoil at 2.26° angle of attack. [From Kandula
and Wilcox (1995) — Copyright (©) AIA4A 1995 — Used with permission.]

We saw in Chapter 4.10 that the stress limiter has a relatively small effect on
most incompressible attached and separated flows. The most noteworthy counter
example occurs for flow past a backward-facing step. Figure 4.49 shows that us-
ing Cy;,, = 1 yields a reattachment length that is 25% longer than measured. By
contrast, using C;,, = 7/8 reduces the discrepancy to 13%. In Subsections 5.8.6
and 5.8.7, we will discover that C};,,, has a similar effect on supersonic backsteps
and flow into compression corners.

We will also see that Menter’s model predicts separation bubbles that are far
larger than measured for Mach numbers in excess of 2. This occurs because
the model uses Cjin = 1. We can reasonably conclude that Cy;,,, = 1 may be
optimum for the transonic-flow regime, yields a somewhat stronger than desired
stress-limiting effect for incompressible flows and yields much too strong an
effect for supersonic flows.
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5.8.5 Transonic Flow Over an Axisymmetric Bump

The transonic-bump experiment of Bachalo and Johnson (1979) is a particularly
challenging separated-flow application. In the experiment, a long slender bump
is fared onto the surface of a cylinder. Freestream Mach number is My = 0.875
and unit Reynolds number is Re,, = 4-10° ft71. A shock wave develops over
the bump, which separates the boundary layer. The flow reattaches in the wake
of the bump, giving rise to a reattachment shock. This flow is very difficult to
predict because the bump surface pressure is extremely sensitive to the size of
the separation bubble, which is strongly coupled to the precise shock locations.
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Figure 5.13: Application of several turbulence models to transonic Sflow past an
axisymmetric bump: — Wilcox (2006) k-w; - - - Wilcox (1 988a) k-w, - - - Menter
(1992¢) k-w/k-¢; — — Spalart-Allmaras (1992); o Bachalo and Johnson.

Figure 5.13 compares computed and measured Cp for four turbulence models.
The short-dashed curve corresponds to the Wilcox (1988a) k-w model, which
does not have a stress limiter. Although the predicted separation-shock location
differs from the measured location by only 6% of the bump’s chord length, c,
computed and measured C), differ significantly. The solid curve corresponds
to the Wilcox (2006) k-w model, which includes a stress limiter. Differences
between computed and measured CY, are generally less than 7%. The long-dashed
curve corresponds to the Spalart-Allmaras model. Although separation-shock
location and separation are about the same as for the Wilcox (1988a) model,
computed C, is closer to measured C, near reattachment. The dotted curve
corresponds to Menter’s (1992c¢) k-w/k-¢ model with a stress limiter. Computed
and measured shock locations and C), are quite close [see, e.g., Forsythe (2000)].
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Using Cjir, = 1 with the Wilcox (2006) k-w model yields Cp, nearly identical
to the Menter prediction. Unfortunately, the improvement in predictive accuracy
for this flow comes at the expense of much greater discrepancies between theory
and experiment for both smaller and larger Mach numbers. This explains why
Menter’s model fares well for Mach numbers from incompressibie up to transonic
speeds, but very poorly for supersonic and hypersonic flows.> Menter’s model,
in fact, appears to be fine tuned for the transonic regime. By accepting 7%
discrepancies between predicted and measured properties for this flow, which
are comparable to those obtained with the Spalart-Allmaras (1992) model, the
Wilcox (2006) k-w model reproduces measurements quite closely all the way
from incompressible speeds to the hypersonic regime.

The Wilcox (1988a) and (2006) model computations were done using Pro-
grams EDDYBL and EDDY2C (see Appendix C). Starting from the leading
edge of the cylinder (z/c = —3.5), EDDYBL was used to solve from laminar
flow through transition and results were saved at z/c = —3. Reynolds num-
ber based on momentum thickness, Reg, at this point is 2450. Output from
EDDYBL was used to define upstream boundary conditions for a full Navier-
Stokes solution using EDDY2C on a 201 x 101 finite-difference mesh. All of the
EDDY2C computations in the following sections have been done in this manner.

5.8.6 Mach 2 Flow Past a Backward-Facing Step

We turn now to compressible flow past a backward-facing step. The case we
will discuss has a freestream Mach number of 2.07 and the incident boundary
layer has a momentum-thickness Reynolds number of Rey; = 1.2 - 10%. This
flow was investigated experimentally by Samimy, Petrie and Addy (1985). The
computation was done with Program EDDY2C using the Wilcox (2006) k-w
model with and without the stress limiter. The finite-difference grid consists of
401 streamwise points and 201 points normal to the freestream flow direction.

As shown in Figure 5.14, with Cj;,, = 7/8, the stress limiter has a barely
noticeable effect on the computed surface-pressure coefficient. Computed and
measured values of C), differ by less than 7% for the entire flowfield. Predicted
reattachment length with the limiter is z, = 2.67H. The length decreases to
z, = 2.55 H without the limiter. Both values are within a few percent of the value
measured by Samimy et al., which is &, = 2.76 H. Using C};,,, = 1 for this flow
increases x, to 2.78H, which is also quite close to the measured reattachment
length. Clearly, the effect is less pronounced than for an incompressible backstep.
However, as we will see in the next subsection, with Cj;,,, = 1 the stress-limiter
effect is a far too strong at Mach 3.

3The primary culprit is not so much the stress-limiter strength, as reflected by the value of Cyim
as 1t is the Boussinesq approximation. We will explore this point in greater depth in Chapter 6.
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Figure 5.14: Effect of the stress limiter on the k-w model Jor Mach 2 flow past
a backward-facing step: —— with limiter; - - - without limiter; o Samimy et al.

5.8.7 Mach 3 Compression Corners and Reflecting Shocks

As discussed in Subsections 5.8.1 and 5.8.3, supersonic flow into a compression
corner and reflection of an oblique shock from a flat surface have proven to be the
most challenging of all two-dimensional separated-flow applications. Figure 5.15
sketches these two geometries, including some of the main features of flow
structure for each. While the geometries are fundamentally different, these flows
are nevertheless very similar. Through extensive experimental investigations,
Petrov et al. (1952) and Chapman et al. (1957) developed the free-interaction
concept. They found that flow details in the vicinity of separation are local
and depend almost entirely on Mach number and static-pressure ratio across the
separation shock. Thus, if we test a turbulence model for compression-corner
flows, we should simultaneously test the model for reflecting shocks to check
consistency with the free-interaction concept.
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(a) Compression Corner Flow (b} Shock-Wave/Boundary-Layer Interaction

Figure 5.15: Schematics of supersonic flow into a compression corner and shock-
wave/boundary-layer interaction (veflecting shock).
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Figure 5.16 compares computed and measured surface pressure and skin
friction for two compression-corner flows and a reflecting-shock case. All three
flows have a freestream Mach number close to three and have separation bubbles
of different sizes. The two compression-corner flows have wedge angles of 20°
and 24°, corresponding to experiments conducted by Settles, Vas and Bogdonoff
(1976) and by Dolling and Murphy (1983). The reflecting-shock case was in-
vestigated experimentally by Reda and Murphy (1972) and by Murthy and Rose
(1978). The incident shock makes an angle of 31° with the horizontal and turns
the flow by 13°. All three computations were done with Program EDDY2C (sec¢
Appendix C) on finite-different grids with 401 streamwise points and 201 points
normal to the surface.

The graphs include results for the k-w model with and without the stress
limiter. In all three cases, with the stress-limiter implemented, computed and
measured surface pressures are very close. Most important, the initial pressure
rise in the computed flowfields matches the measured rise. This means the
separation shock is in the same location in the numerical and experimental flow-
fields. The predicted pressure plateau in the separation bubble and skin friction
downstream of reattachment are much closer to measurements than any of the
results shown in Figure 5.10. Discrepancies between computed and measured ¢y
downstream of reattachment indicates the rate of recovery from separation and
the return to equilibrium conditions is a bit different.

Without the stress limiter, the computed separation-shock location is clearly
further downstream than measured, which distorts the entire flowfield.

The similarity between the shapes of the computed surface-pressure and
skin-friction curves for the shock-wave/boundary-layer interaction and the 24°
compression-corner flow is striking. Because the overall pressure rise is nearly
the same for the two flows, this similarity confirms that the k-w model’s predic-
tions are consistent with the free-interaction concept.

The numerical separation points for these flows are further upstream than
indicated by oil-flow measurements. Marshall and Dolling (1992) indicate that
the flow includes a low-frequency oscillation of the separation shock. Adams
(2000) has found this oscillation in a Direct Numerical Simulation of a Mach 3
compression-corner flow. This phenomenon is also observed in three-dimensional
shock-separated flows [Brusniak and Dolling (1996)]. The time-mean pressure
distribution upstream of the corner is affected by these oscillations, whose fre-
quency content includes substantial energy at time scales of the mean motion.
This unsteadiness is responsible for the apparent mismatch between the beginning
of the pressure rise and the separation point. Since computations with the k-w
model are so close to measured properties, yet display no low-frequency oscilla-
tion of the shock, we can reasonably conclude that the computations effectively
incorporate the slow oscillation into the Favre-averaged flow variables.
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Jriction jor Mach 3 shock-separated flows using the Wilcox (2006) k-w model:
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Figure 5.17: Effect of the stress-limiter coefficient, Ciiy,, on computed
separation-point location for Mach 3 flow into a 24° compression corner.

Figure 5.17 indicates how separation-point location, z4, for the 24° com-
pression corner flow varies with Cj;,,,. As shown, similar to the effect for an
incompressible backward-facing step (see Figure 4.49), —z, increases monoton-
ically as Cj;m increases. Selecting Cy;, = 7/8 yields a value of z, = —1.826,
which provides a very close match to most details of this flowfield. Figure 5.18
shows that using Ci;, = 1 produces a separation bubble roughly twice the
measured size. This explains why Menter’s model fares so poorly for this flow
[Forsythe (2000)].
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Figure 5.18: Comparison of computed and measured surface pressure and skin
friction for Mach 3 flow into a 24° compression corner: —— Menter (1992¢c)
k-w/k-€ model; - - - Wilcox (2006) k-w model with Cliy, = 1.
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5.8.8 Mach 11 Reflecting-Shock

We turn now to a hypersonic flow, viz., the Mach 11 shock-wave/boundary-
layer interaction investigated by Holden (1978). The incident shock makes a
17.6° angle with the surface and increases the static pressure by a factor of 70.
The surface is highly cooled with a wall to adiabatic-wall temperature ratio of
Tw/Taw = 0.2. All computations discussed below were done with Program
EDDY2C on a 501 x 301 point finite-difference mesh.
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Figure 5.19: Effect of the stress limiter and viscous modifications on the k-w
model for a Mach 11 shock-wave/boundary-layer interaction: — with limiter;
- - - without limiter; - - - with viscous modifications; o Holden (1978)

Figure 5.19 compares computed and measured surface pressure for three ver-
sions of the Wilcox (2006) k-w model, viz., with the stress limiter, without the
stress limiter and with low-Reynolds-number viscous modifications. As shown,
the limiter increases separation bubble length from 0.344, to 1.536,. The com-
puted surface pressure rise is much closer to the measured rise when the limiter
is used. As with the Mach 3 applications of the preceding subsection, this indi-
cates that the predicted shock pattern closely matches the experimental pattemn.
Holden estimated the size of the separation bubble to be about 1.005,. The
surface-pressure data suggest a separation bubble about twice that size.

The third computation shows the effect of the k-w model’s viscous modifi-
cations (Subsection 4.9.2). The low-Reynolds-number modifications make very
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little difference for all of the shock-separated flows considered thus far. For this
flow, the effect is more pronounced. The low-Reynolds-number model predicts
a separation bubble with a length of 1.814,, an increase in length of 18%. As
shown in the inset figure, this yields even closer agreement between theory and
experiment throughout the region of reversed flow.

5.8.9 The Reattachment Point Heat-Transfer Anomaly

While significant progress has finally been made in predicting surface pressure,
skin friction and velocity profiles in shock-separated flows, one problem contin-
ues to defy accurate prediction. Specifically, surface heat transfer in the vicinity
of reattachment predicted by all turbulence models is much higher than measured.
To illustrate the problem, Figure 5.20 compares computed and measured surface
pressure and heat transfer for Mach 7.05 flow into a 35° axisymmetric compres-
sion comer [Kussoy and Horstman (1989)]). The surface is cooled and has a wall
to adiabatic-wall temperature ratio of T3, /7T, = 0.4. Computed results shown
are for the Wilcox (2006) k-w model with and without the stress limiter. The
computation was done with Program EDDY2C on a 301 x 151 mesh.

The graph to the right shows the ratio of surface heat transfer rate, q,,, to its
value far upstream of the interaction, q,,_,. Without the stress limiter, the peak
heat transfer rate to the surface is double the measured value. Even with the stress
limiter included, the peak heating rate is 50% higher than measured. Interestingly,
increasing the strength of the stress limiter by using a larger value of C;,, does
two things. First, it increases the size of the separation bubble. Second, it
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Figure 5.20: Computed and measured surface pressure and heat transfer for
Mach 7 flow into a 35° axisymmetric compression corner (cylinder-flare geom-
etry) using the Wilcox (2006) k-w model: — with limiter; - - - without limiter;
o Kussoy-Horstman (1989)
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causes the ratio q /g, to increase slightly. In fact, a series of computations
varying Cj;, from 0 to 1 shows that the maximum value of Qw/Qw,, OCCurs
when Cj;,, = 0, decreases to a minimum value of 1.51 when C;,, = 0.8 and
increases to 1.57 when Cj;,,, = 1.

This is consistent with the fact that turbulent transfer of heat and momentum
are fundamentally different processes. On the one hand, the largest eddies deter-
mine the nature of the Reynolds stresses, which are responsible for the turbulent
transport of momentum throughout a given flow. On the other hand, heat transfer
occurs at much smaller scales and is less directly related to the large eddies. The
stress-limiter primarily effects the Reynolds stresses well above the sublayer, i.e.,
it affects the larger eddies in a boundary layer. So, it is sensible that the stress
limiter would increase the length of the separation bubble and simultaneously
have a less pronounced effect on surface heat transfer.

Coakley and Huang (1992) propose and test numerous compressibility mod-
ifications, one of which is very effective in reducing predicted heating rates at
the reattachment point for shock-separated flows. Specifically, they first define
the so-called von Karman length scale, ¢, as follows.

min (2.5y, k'/2/w), k — w model
¢ ={ ( /%) (5.133)

min (2.5y, k3/2/e) , k — e model

‘where y is distance normal to the surface. Then, the value of w or € is recomputed
according to

w=k"Y2/8,,  e=k¥?/1, (5.134)

This compressibility correction is very effective and yields realistic heating rates
at reattachment for both k-w and k-e models. Figure 5.21 illustrates how well the
modification works for the Kussoy-Horstman Mach 7 cylinder-flare experiment.
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Figure 5.21: Computed and measured surface pressure and heat transfer for
Mach 7 flow into a 35° axisymmetric compression corner. [From Huang and
Coakley (1993) — Copyright (© AIAA 1993 — Used with permission.]
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Results are shown for the Launder-Sharma (1974) k-e¢ model and the Wilcox
(1988a) k-w model. Without a heat-transfer correction, the Launder-Sharma
model surface heat transfer, q,,, is triple the measured value, while the k-w model
is high by a factor of about two. The Coakley-Huang modification brings the
computed heat transfer into much closer agreement with measurements. Note that
the computed results in Figure 5.21 also include a compressibility modification
that increases the length of the separation bubble. Like the stress-limiter, the same
modification produces much too strong an effect for Mach 3 shock-separated
flows [Coakley and Huang (1992)].

5.8.10 Three-Dimensional Applications

There has been substantial progress in the capability for prediction of three-
dimensional shock wave, turbulent boundary layer interactions. Recent reviews
by Knight (1993, 1997, 2003) describe the status of research for five basic ge-
ometries. Figure 5.22(a) illustrates the three-dimensional single fin, arguably the
most extensively studied such interaction. The deflection of the fin surface by an
angle o generates an oblique shock that interacts with the boundary layer on the
flat plate. This interaction is of some practical interest, as it represents a geomet-
ric abstraction of a fin-body juncture for a high-speed aircraft. Figure 5.22(b)
compares computed and measured surface pressure for M, = 2.9, a = 20°, and
Res, = 9 - 105, where §, is boundary-layer thickness upstream of the interac-
tion. The comparison has been made at a spanwise distance, z = 6.89, from the
plane of symmetry. Computations using the Baldwin-I.omax (1978) model (la-
beled “Knight”) and Rodi’s (1991) k-¢ model (labeled “Horstman™) are in close

4
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Fin —-— THEDRY —KRIGHT 4
YT a 3 #é
5
x >4
8hook 7 {/5-_
/
_ P . 1 peo e LA
/;uw
0 L 1 1 1 i 1
A6 10§ 0 6 10 15
- ® — Tshock (cm)
(a) Flow Geometry (b) Surface pressure, z = 6.84,

Figure 5.22: Single-fin shock-wave/boundary-layer interaction at Mach 2.9 with
o = 20°. [Figure provided by D. D. Knight.]
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agreement with measurements. Similar close agreement has been obtained with
experimental data for pitot pressure and yaw angle [Knight et al. (1987)]. These
results imply that the flowfield is predominantly rotational and inviseid, except
within a thin region adjacent to the solid boundaries. This result is similar to
the triple-deck theory developed for interacting boundary layers [e.g., Stewartson
(1981)] and extended to non-separated three-dimensional shock wave, turbulent
boundary layer interactions by Inger (1986). Consequently, the choice of turbu-
lence model is unimportant for comparison with all but the inner (lower deck)
provided the upstream boundary layer is correct. However, predicted skin friction
and surface heat transfer are very sensitive to the turbulence model chosen, and
can exhibit significant disagreement with experiment [Knight (1993)].
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Figure 5.23: Single-fin shock wave/boundary layer interaction at Mach 4 with
a = 30.6°: —— Durbin (1996) k-w model: - - - Wilcox (1988a) k-w model:
o Experiment. [Figure provided by D. D. Knight.]

Figure 5.23 shows how the stress limiter affects k-w model predictions for a
single-fin shock-wave/boundary-layer interaction. The Mach number is 4, the
fin angle is 30.6° and Reynolds number just upstream of the interaction is
Res, =1.6-10°. The dashed curve labeled “WI” corresponds to the Wilcox
(1988a) k-w model, which has no stress limiter. Computed surface pressure is
typically 40% higher than measured over the interaction region. The length of
the region is about 10% shorter than measured. By contrast, using the Durbin
(1996) k-w model (the solid curve labeled WD), which is essentially the Wilcox
(1988a) model with a Cj;,,, = 1.03 stress limiter, differences between computed
and measured surface pressures are reduced to a few percent. However, the
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length of the interaction region is nearly 20% longer than measured. This is
similar to the effect of Cj;,, on two-dimensional flows observed throughout Sec-
tion 5.8. Using a smaller value such as C;,,, = 7/8 would be likely to reduce
discrepancies between computed and measured properties for this flow.
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Figure 5.24: Double-fin shock wave/boundary layer interaction at Mach 8.3
with o = 15°: —— Baldwin-Lomax model; - - - Rodi k-¢ model; o Experiment.
[Figure provided by D. D. Knight.]

Figure 5.24(a) shows the double-fin geometry. This geometry is of practical
interest as it represents a geometric simplification of a hypersonic inlet using
sidewall compression, or a sidewall interaction for a supersonic mixed compres-
sion inlet. The two fins generate opposing shocks that intersect on the centerline,
and interact with the boundary layers on the flat plate and fin. Figure 5.24(b)
compares computed [Narayanswami, Horstman and Knight (1993)] and mea-
sured peak surface pressure (on the centerline) for M, = 8.3, a = 15°, and
Res, = 1.7-10%. The turbulence models are the Baldwin-Lomax (1978) model
and the Rodi (1991) version of the k-e model. The predictions are reasonably
close except at the peak near /8, = 10. Baldwin-Lomax predictions are within
about 20% of measurements, while k-¢ predictions differ by as much as 45%. It
is interesting to note that the peak pressure is approximately half the theoretical
inviscid level because of the viscous-inviscid interaction. Reasonable agreement
is obtained between computed and measured pitot pressure and yaw-angle pro-
files. Comparison of computed eddy viscosity shows significant differences,
however. As a result, Knight concludes that, similar to the single-fin case, the
flow is predominantly rotational and inviscid, except within a thin region near
the surface.

As with two-dimensional shock-wave/boundary-layer interactions, the turbu-
lence model has a very significant effect on computed heat transfer. Figure 5.25
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Figure 5.25: Surface pressure and heat transfer on the throat middle line Jor a
double-fin shock wave/boundary layer interaction at Mach 4. [Figure provided
by D. D. Knight.]

compares computed and measured surface pressure and heat transfer along the
centerline for a Mach 4 double-fin flow with o = 15°. The solid curve identi-
fied as “WI” is the Wilcox (1988a) k-w model. While the computed pressure is
arguably the best of the three curves shown, the surface heat transfer lies farthest
from measurements. The maximum heat-transfer rate is double the measured
value. The curves identified as “WM*” correspond to the Moore and Moore
(1999) version of the k-w model with a stress limiter. As shown, the computed
and measured surface heat-transfer differs significantly.

5.9 Summary

This chapter underscores the correctness of Morkovin’s hypothesis that the ef-
fect of density fluctuations on the turbulence is small provided they remain small
relative to the mean density. This is especially obvious given the close agreement
between computed and measured flow properties for shock-separated flows with
the Wilcox (2006) k-w model using no special compressibility modifications.
Favre averaging simplifies the basic conservation equations and helps avoid
the need to model most of the correlations involving density fluctuations. The
terms that require modeling, viz., dilatation dissipation, pressure diffusion, pres-
sure dilatation and pressure work, have been modeled based on DNS studies.



296 CHAPTER 5. EFFECTS OF COMPRESSIBILITY

Research has shown that these DNS studies feature Reynolds numbers that are
small compared to those realized in practical engineering applications. All of
these terms appear to be negligible for Reynolds numbers of practical interest.

The dilatation-dissipation compressibility correction has proven useful in de-
scribing the reduced growth of a mixing layer as Mach number increases. How-
ever, the term has an adverse effect on most other flows and cannot be used for
general applications.

Perturbation analysis demonstrates that the k-¢ model does not faithfully
reproduce the compressible law of the wall, even for a constant-pressure boundary
layer. This failure of the model means any compressible-flow computations based
on k-¢ are highly suspect. By contrast, the k-w model faithfully reproduces the
compressible law of the wall.

Thanks to the stress-limiter concept, the Wilcox (2006) k-w model predicts
reasonably close agreement with measured properties of shock-separated flows
for transonic, supersonic and hypersonic regimes. While discrepancies can be
reduced even further by increasing the strength of the limiter in specific cases
(i.e., by increasing Cy;p,), choosing a-limiter strength of Cy;,,, = 7/8 appears
to be the optimum choice for covering the entire range of flow speeds from
incompressible to hypersonic. The stress-limiter concept is generally ineffective
for the k- model.

As originally formulated, the popular Spalart-Allmaras (1992) one-equation
model and the Menter (1992c) k-w/k-¢ hybrid two-equation model are very in-
accurate for supersonic and hypersonic flows. In the latter case, computations in
this chapter show that the model fails for such flows because its stress limiter is
too strong.

Finally, all models predict much larger than measured heat-transfer rates at
a reattachment point. While the model correction introduced by Coakley and
Huang (1992) appears to be effective for two-dimensional and axisymmetric
flows, it does not fare as well for three-dimensional applications.
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Problems

5.1 Derive the Reynolds-averaged momentum-conservation equation for compressible
flow.

5.2 Derive the Favre-averaged Reynolds-stress equation [Equation (5.43)].
5.3 Verify that Equations (5.58) and (5.59) are equivalent.
5.4 The classical Crocco temperature-velocity relationship for an adiabatic-wall boundary
layer is )
LI P (—”—) i

Tw UOO
where A is a constant. Use this approximation to evaluate the following integral.

@
u*=/ idu
0 Pw

Compare your result with Equation (5.125).
5.5 To use the WKB method in solving an equation such as

d?w F(v) dw AT
W iy w T =

we assume a solution of the form

w(v) ~ exp [AZSn (U)A"“:l ~ exXp P\Su(v) + S1(v) + O(z\_l)}

n=0

(a) Venfy that So(v) and Sy (v) are given by

duv
So =+ ~+ constant
0 / NGO

S1(v) = n|f(v)]F 72974 4 constant

(b) Use the result of Part (a) to show that the leading-order solution to Equation (5.102)
is given by Equations (5.104) and (5.105).

(¢) Now, complete the derivation of Equation (5.107).

5.6 Derive the compressible law of the wall implied by the Cebeci-Smith model.

5.7 Using the compressible log-layer solution, show that the turbulence length scale for
the k-.w model defined by ¢ = k'/? /w varies linearly with distance from the surface in
the commpressible log layer.
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5.8 Using the compressible log-layer solution, show that the turbulence length scale for
the k-e model defined by £ = k®/2 /e varies linearly with distance from the surface in the
compressible log layer.

5.9 Coakley and Huang (1992) have developed a compressibility modification for two-
equation turbulence models by observing that, under rapid distortion due to sudden flow
compression or expansion, the equations for k and € assume the form
Eﬂ_fg - E 3‘&;’ P dE aﬁg
dt 3 0z dt dz;

where ¢ is a constant. If the turbulence length scale, £ = k32 /e, is such that p¢ remains
constant under a sudden compression or expansion, what is the value of c?

5.10 For incompressible flow, Pope’s vortex-stretching parameter is
S i §0:8 85k Sk
? (Brw)?
For incompressible flows, this parameter vanishes in two-dimensional geometrics. Verify

that x, # O in a compressible, two-dimensional flow.

5.11 The object of this problem is to deduce the jump condition on turbulence kinetic

energy across a normal shock wave. For flow through a normal shock far from solid
boundaries, the k-~ model’s equation for k is

dk dii\? d pk\ dk

il o () oo (v 2) 2]

PRy —RvE (d:c) Bpwk + dx [(“+J w/ dzx

(a) Noting that the velocity has a step discontinuity and flow is uniform just ahead of

and just behind the shock, explain why this equation simplifies to

Ak (dﬁ)2
P dz ~ g dx
(b) Show that, with a stress limiter, the jump condition for k across a normal shock is

*/Clim
@m(ﬁ_z)“ﬁ’ ‘

k1 P1
(c) What is the maximum value of k2 /ky possible if the gas is air and Cism = 7/87

5.12 Using Program MIXER and its menu-driven setup utility, Program MIXER_DATA
(see Appendix C), compute &' /6, at Mach 5 for the k-w, k-¢ and RNG k-e models. That
is, let the Mach number of the upper stream be M; = 5, and let the lower stream be at
rest. Do your computations using 101 grid points, and exercise the program for the Sarkar,
Zeman and Wilcox compressibility corrections defined in Equations (5.81) through (5.83)-

5.13 The object of this problem is to compare predictions of modern turbulence models
with measured properties of a Mach 2.65 turbulent boundary layer with adverse pres-
sure gradient and surface heat transfer. The experiment to be simulated was conducted
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by Femando and Smits. Use Program EDDYBL, its menu-driven setup utility, Program
EDDYBL _DATA, and the input data provided on the companion CD (see Appendix C).
Do 3 computations using the k-w model, the Launder-Sharma k-¢ model and the Spalart-
Allmaras one-equation model. Compare computed skin friction with the following mea-
sured values.

le@m] o s ¢ [sm] ¢ ]
1151 | 992.107% ][ 1.248 1 946.10-% || 1.349 | 1.08-10-3
1.172 | 9.96:107% || 1.273 | 9.41.10~4 || 1.361 | 1.04-10-3
1.197 | 9.67-1074 || 1.299 | 1.01.10—2
1.222 | 943-1074 || 1.324 | 1.07.10-3

5.14 The object of this problem is to compare predictions of modemn turbulence models
with measured properties of a Mach 2.2 flat-plate turbulent boundary layer. The experi-
ment to be simulated was conducted by Shutts. Use Program EDDYBL, its menu-driven
setup utility, EDDYBL_DATA, and the input data provided on the companion CD (see
Appendix C). Do 3 computations using the k-w model, the Launder-Sharma k-¢ model
and the Spalart-Allmaras model. Compare computed velocity profiles with the following
measured values. Also, compare to the measured skin friction at s = 3.02 ft, which is
cy = 0.00162.

L yT | u* Jur ” yT | u* fur I yt | u* Jur |
6.1100-10% | 16.056 [[ 3.3197-10% | 19.064 || 1.5200.10° | 24.527
7.4670-101 | 16.069 | 4.0052-102 | 19.838 1.8607-10% | 25.544
8.7570-10! | 16.030 || 4.6841-102 | 20580 || 2.1995.10% | 26.445
1.1540-10% | 16.030 || 5.7090-10% | 20962 || 2.8776-10% | 27.749
1.4420-10% | 16.030 || 6.7206-102 | 21.360 || 3.5573.10% | 28.056
1.8261-10% | 16.961 8.4178-10% | 22.098 || 4.2367-103 | 28.081
2.2402.10% | 17.894 || 1.0115-10% | 22.764 || 4.9150-10% | 28.105
2.7900-10%2 | 19.218 || 1.1812-103 | 23.423

5.15 The object of this problem is to compare predictions of modern turbulence models
with measured properties of a Mach 4.5 flat-plate turbulent boundary layer. The experi-
ment to be simulated was conducted by Coles. Use Program EPDYBL, its menu-driven
setup utility, EDDYBL_DATA, and the input data provided on the companion CD (see
Appendix C). Do 3 computations using the k-w model, the Spalart-Allmaras model and
the Baldwin-Lomax algebraic model. Compare computed velocity profiles with the fol-
lowing measured values. Also, compare to the measured skin friction at s = 1.90 ft,
which is ¢y = 0.00126.

[ vt [wur [ g7 Jo/ur [yt | o jur |
1.4420-107 | 10295 [[ 5.1570-10T | 14990 || 1.9650.10% | 19.803
1.7100-10' | 10.972 {| 6.2450-101 | 15472 {| 2.3909-103 | 20.95]
2.0380-10' | 11.713 || 7.5510-10 | 15968 || 2.8953.103 | 21.95]
2.4440-101 | 12.456 || 9.1470-10* | 16.559 || 3.5196.103 | 22.523
2.6230-10' | 13.182 || 1.1099-10% | 17258 || 4.2800-10% | 22.540
3.5590-10* | 13.848 || 1.3466-102 | 18.052
4.2930-101 | 14.465 1.6282:10%2 | 18.943
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5.16 Compute Samimy’s Mach 2.07 flow past a backward-facing step using the Baldwin-
Lomax algebraic model. Use Program EDDY2C, its menu-driven setup utility, Program
EDDY2C_DATA, and the input data provided on the companion CD (see Appendix C).

(a) You must first run Program EDDYBL to establish flow properties at the upstream
boundary. Modify the supplied input-data file eddybl.dat, using trial and error to
adjust the “Maximum Arclength” (SSTOP) so that the Reynolds number based on
momentum thickness is 1.20 - 10%.

(b) Modify the supplied input-data file eddy2c.dat for Program EDDY2C to run the
computation 500 timesteps (NEND). '

(c) Make graphs of the “residual” and the value of the reattachment length, z»/H, as
functions of timestep number.

(d) Compare the value of x,./ H predicted by the Baldwin-Lomax model relative to the
measured value and the value predicted by the ¥~ model (see Subsection 5.8.6).
Examine the surface-pressure graph provided by EDDY2C_DATA and comment
on the quality of the solution relative to that of the k- model

NOTE: This computation will take about 20 minutes of CPU time on a 3-GHz Pentium-D
microcomputer.

5.17 Compute Settles’ Mach 2.79 flow into a 20° compression corner using the k-w
model with viscous modifications. Use Program EDDY2C, its menu-driven setup util-
ity, Program EDDY2C_DATA, and the input data provided on the companion CD (see
Appendix C).

(a) You must first run Program EDDYBL to establish flow properties at the upstream
boundary. After selecting the k-w model with viscous modifications, modify the
supplied input-data file eddybl.dat, using trial and error to adjust the “Maximum
Arclength” (SSTOP) so that the Reynolds number based on momentum thickness
is 9.38 - 10%.

(b) Run EDDY2C and make graphs of the “residual” and the length of the separation
bubble, (x, — x;)/J,, as functions of timestep number.

(c) Compare the value of (z. — 2s)/8, predicted by the k-w model relative to the
value predicted without viscous modifications, viz., (z, — zs)/6o = 1.16.

NOTE : This computation will take about 45 minutes of CPU time on a 3-GHz Pentium-D
microcomputer.

5.18 Compute Settles’ Mach 2.79 flow into a 20° compression corner using the k-w
model with the Wilcox compressibility term. Use Program EDDY2C, its menu-driven
setup utility, Program EDDY2C_DATA, and the input data provided on the companioft
CD (see Appendix C).

(a) You must first run Program EDDYBL to establish flow properties at the upstream
boundary. After selecting the Wilcox compressibility term, modify the supplied
input-data file eddybl.dat, using trial and etror to adjust the “Maximum Arclength”
(SSTOP) so that the Reynolds number based on momentum thickness is 9.38- 10*.
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(b} Run Program EDDY2C _DATA and, in the “Numerics” menu, change the max-
imum number of timesteps (NEND) to 2000. Run EDDY2C with the Wilcox
compressibility term and make graphs of the “residual” and the length of the sep-
aration bubble, (zr — x5)/d,, as functions of timestep number.

(c) Compare the value of (x, — z,)/8, predicted by the k-w model with the Wilcox
compressibility term relative to the value predicted without the compressibility
term, viz., (r — zs)/6o = 1.16. Examine the skin-friction and surface-pressure
graphs provided by EDDY2C_DATA and comment on the quality of the solution
relative to that of the k-w model without the compressibility term. '

NOTE: This computation will take about 90 minutes of CPU time on a 3-GHz Pentium-D
microcomputer,
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Chapter 6

Beyond the Boussinesq
Approximation

The Boussinesq eddy-viscosity approximation assumes that the principal axes of
the Reynolds-stress tensor, Tij» are coincident with those of the mean strain-rate
tensor, S;;, at all points in a turbulent flow. This is the analog of Stokes’ pos-
tulate for laminar flows. The coefficient of proportionality between 7;; and Sij
is the eddy viscosity, v. Unlike the molecular viscosity which is a property
of the fluid, the eddy viscosity depends upon many details of the flow under
consideration. It is affected by the shape and nature (e.g., roughness height) of
any solid boundaries, freestream turbulence intensity, and, perhaps most signif-
icantly, flow-history effects. Flow-history effects on 7; ; often persist for long
distances in a turbulent flow, thus casting doubt on the validity of a simple linear
relationship between 7;; and S;;, even for the primary shear stress. In this chap-
ter, we examine several flows for which the Boussinesq approximation yields a
completely unsatisfactory description. We then examine some of the remedies
that have been proposed to provide more accurate predictions for such flows.
Although our excursion into the realm beyond the Boussinesq approximation is
brief, we will see how useful the analytical tools developed in preceding chapters
are for even the most complicated turbulence models.

6.1 Boussinesq-Approximation Deficiencies

While models based on the Boussinesq eddy-viscosity approximation provide
excellent predictions for many flows of engineering interest, there are some ap-
plications for which predicted flow properties differ greatly from corresponding
measurements. Generally speaking, such models are inaccurate for flows with
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sudden changes in mean strain rate and for flows with what Bradshaw (1973a)
refers to as extra rates of strain. It is not surprising that flows with sudden
changes in mean strain rate pose a problem. The Reynolds stresses adjust to such
changes at a rate unrelated to mean-flow processes and time scales, so that the
Boussinesq approximation must fail. Similarly, when a flow experiences extra
rates of strain caused by rapid dilatation, out of plane straining, or significant
streamline curvature, ali of which give rise to unequal normal Reynolds stresses,
the approximation again becomes suspect. Some of the most noteworthy types of
applications for which models based on the Boussinesq approximation fail are:

1. flows with sudden changes in mean strain rate;
2. flow over curved surfaces;

3. flow in ducts with secondary motions;

4. flow in rotating fluids;

5. three-dimensional flows.

As an example of a flow with a sudden change in strain rate, consider the
experiment of Tucker and Reynolds (1968). In this experiment, a nearly isotropic
turbulent flow is subjected to uniform mean normal strain rate produced by the
following mean velocity field:

U = counstant, V = —ay, W =az 6.1)

The coefficient a is the constant strain rate. The strain rate is maintained for
a finite distance in the x direction in the experiment and then removed. The
turbulence becomes anisotropic as a result of the uniform straining, and grad-
ually approaches isotropy downstream of the point where the siraining ceases.
Wilcox and Rubesin (1980) have applied their k-w? eddy-viscosity model to this
flow to demonstrate the deficiency of the Boussinesq approximation for flows in
which mean strain rate abruptly changes. Figure 6.1 compares the computed and
measured distortion parameter, X, defined by

,Ur2 _ ,wrg

K (6.2)

il

V2 + w'?

As shown, when the strain rate is suddenly removed at z &~ 2.3 m, the model
predicts an instantaneous return to isotropy, i.e., all normal Reynolds stresses
become equal. By contrast, the turbulence approaches isotropy at a finite rate.
Note also that the model predicts a discontinuous jump in K when the straining
begins at z = 0. Interestingly, if the computation is extended downstream of
r = 2.3 m without removing the strain rate, the model-predicted asymptotic
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Figure 6.1: Computed and measured distortion parameter for the Tucker-
Reynolds plane-strain flow: —- k-w? model; o o & Tucker-Reynolds. [From
Wilcox and Rubesin (1980).]

value of K matches the measured value at z = 2.3 m, but approaches this value
at a slower-than-measured rate.

As an exampie of a flow with significant streamline curvature, consider flow
over a curved surface. Meroney and Bradshaw (1975), and later investigators,
find that for both convex and concave walls, when the radius of curvature, R,
is 100 times the local boundary-layer thickness, &, skin friction differs from its
corresponding plane-wall value by as much as 10%. By contrast, laminar skin
friction changes by about 1% for /R = 0.01. Similar results have been obtained
by Thomann (1968) for supersonic boundary layers; for constant-pressure flow
over surfaces with /R ~ 0.02, heat transfer changes by nearly 20%. Clearly,
many practical aerodynamic surfaces are sufficiently curved to produce signif-
icant curvature effects. For such flows, a reliable turbulence model must be
capable of predicting effects of curvature on the turbuience.

Standard two-equation turbulence models fail to predict any significant effect
of streamline curvature. For an incompressible boundary layer on a surface with
radius of curvature R, the &k equation is

ok ok oU U\’ ) . Ok

The effects of curvature appear only in the production term, and have a negligible
impact on model predictions, since (U/R)/(8U/dy) is somewhat less than § /R
over most of the boundary layer.
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103¢y

z(ft)

Figure 6.2: Computed and measured skin friction for flow over a convex sur-
Jface with constant pressure, Wilcox (2006) k-w model : —— without curvature
correction, - - - with curvature correction; o So and Mellor.

For example, Figure 6.2 compares computed and measured skin friction for
flow over a convex wall. The flow, experimentally investigated by So and Mellor
(1972), has nearly constant pressure. The wall is planar up to x = 4.375 ft and
has §/R ~ 0.075 beyond that location. As shown, computed skin friction for
the k-w model (the dashed curve) is as much as 40% higher than measured.

Wilcox and Chambers (1977) propose a curvature correction to the turbulence
kinetic energy equation that provides an accurate prediction for flow over curved
surfaces. Appealing to the classical stability arguments for flow over a curved
wall advanced by von Karman (1934), they postulate that the equation for k
should more appropriately be thought of as the equation for v'2. For flow over
a curved surface, again with radius of curvature R, the equation for v2 is

Ov'? ov'2 U——

UB:.!: +V8y ~2ﬁuv——-~ (6.4)

The last term on the left-hand side of Equation (6.4) results from transforming to

surface-aligned coordinates.! Approximating v'2 &~ §k and —u'v/ ~ v,.0U /8y,

Wilcox and Chambers model this effect by adding a term to the k-w model’s

k equation. The boundary-layer form of the equations for flow over a curved
surface is as follows.

oU ou 1dP 0 ou U
— + V==t — == - = 5
Yoty pdz | By [(V+V)(3y R)] G2

IThe equation for w2 has the same term with the opposite sign and the w2 equation has no
additional curvature-related term. Thus, when we contract the Reynolds-stress equation to form the
k equation, no curvature-related term appears.
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0k .8k 9 USU U %
U%—f—V +§V —!/T(—-——U—) —~ﬁ‘wk+-3—[(u+a*£) %J

8y "R By dy R By w/ By

(6.6)

Aw Ow ou  U\? 040k dw 8 kY dw
o el PR e — e | =B e . S chitly e s
UB:}: N Oy “ (8y 'R) b w Oy dy * dy [(V+Jw) 8y]
(6.7)

The last term on the left-hand side of Equation (6.6) is the Wilcox-Chambers
curvature-correction term. As shown in Figure 6.2, including the curvature term
brings model predictions into much closer agreement with measurements. A
perturbation analysis of Equations (6.5) to (6.7) for the log layer (see problems
section) shows that the model predicts a modified law of the wall given by

[1 - 63%] % = -}];-fn (%g) + constant (6.8)
with B = 8.9. This is very similar to the modified law of the wall deduced by
Meroney and Bradshaw (1975), who conclude from correlation of measurements
that 85 ~ 12.0.

Other curvature corrections have been proposed for two-equation models.
Lakshminarayana (1986) and Patel and Sotiropoulos (1997) present comprehen-
sive overviews. Often, in the context of the k-¢ model, a correction term is added
to the € equation. Launder, Priddin and Sharma (1977), for example, replace the
coefficient C'.» [see Equation (4.48)] by

Cez — Cea (1 - 0.2Riy) (6.9)

where Ri; is the turbulence Richardson number defined by

2U

Rip = ROU 5y (6.10)
This type of correction yields improved accuracy comparable to that obtained
with the Wilcox-Chambers curvature correction.

While two-equation model curvature-correction terms greatly improve pre-
dictive accuracy for flow over curved walls, they are ad hoc modifications that
cannot be generalized for arbitrary flows. The Wilcox-Chambers curvature term
is introduced by making analogy to the full Reynolds-stress equation and by as-
suming that k& behaves more like v'? than the turbulence kinetic energy for such
flows. This implicitly assumes that a stress-transport model will naturally predict
effects of streamline curvature. We will see in Section 6.3 that this can indeed

be the case, at least for convex curvature.
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These two applications alone are sufficient to serve as a warning that models
based on the Boussinesq approximation will fail under some frequently encoun-
tered flow conditions. Such models also fail to predict secondary motions that
commonly occur in straight, non-circular ducts, and in the absence of ad hoc
corrections, fail to predict salient features of rotating and stratified flows. While
these are more subtle and specialized applications, each failure underscores the
fact that models based on the Boussinesq approximation are not universal. The
following sections explore some of the proposals made to remove many of these
deficiencies in a less ad hoc fashion.

6.2 Nonlinear Constitutive Relations

One approach to achieving a more appropriate description of the Reynolds-stress
tensor without introducing any additional differential equations is to assume the
Boussinesq approximation is simply the leading term in a series expansion of
functionals. Proceeding with this premise, humerous researchers have developed
such relations with varying degrees of complexity. This section sketches some
of the most important progress in developing nonlinear constitutive relations.

6.2.1 The Earliest Formulations

Lumley (1970) and Saffiman (1976) show that for incompressible flow the ex-
pansion must proceed through second order according to

2 -k k
Tig = _gkaij + 2vpS;; — B:;SmnSmnc?,;j — C;ESikSkj

koo k k
_D;E (biko‘kj i Sjkgki) — F:}“Q“angmnaz'j = G"w-z-ﬂikﬂkj (611)

where B, C, D, F and G are closure coefficients, and k/w? may be equivalently
written as k3 /€2, Also, S;; and §2;; are the mean strain-rate and rotation tensors,

viz.,
1 /oU, 09U; 1 /oU; OU;

g s LB Qs = = 2 - A2

Sz 2 (8.’1’53 F 32}1; ) and . 2 (().’L‘J c?xt- ) (6 )

In order to guarantee that the trace of 7;; is —2k, we must have B = —C/3

and F = —(/3. Equation (6.11) can be simplified by requiring it to conform
with certain fundamental experimental observations. In the experiment of Tucker
and Reynolds (1968), for example, the normal Reynolds stresses are related
approximately by

(g FiTezd (6.13)

b | =t

]
me ~
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Substituting Equations (6.1) and (6.13) into Equation (6.11) shows that neces-
sarily ' = 0. In addition, Ibbetson and Tritton (1975) show that homogeneous
turbulence in rigid body rotation decays without developing anisotropy. This ob-
servation requires G = 0. Finally, if Equation (6.11) with C = G = 0 is applied
to a classical shear layer where the only significant velocity gradient is 8U /Oy,
Equation (6.13) again applies with 7, and 7, interchanged, independent of the
value of D. Thus, Saffman’s general expansion simplifies to:

2 k
Tig = —-'gk(sij + 2113-83'3' = DL_U_Z (S@kgkj —+ Sjkﬂkz‘) (614)

In analogy to this result, Wilcox and Rubesin (1980) propose the following
simplified nonlinear constitutive relation for their k-w? model.

EBU;Q(S_' 8 k(Sik Qs + Sk Qi)
30zy 9 (B*w? + 28mnSmn)
llle term 2.5;nn Smn in the denominator of the last term is needed to guarantee that
u’2, v'? and w2 are always positive. The primary usefulness of this prescription

for the Reynolds-stress tensor is in predicting the normal stresses. The coefficient
8/9 1s selected to guarantee

w?: 02 w?2=4:2:3 (6.16)

iy = =2k + 20, (sz-- - (6.15)

for the flat-plate boundary layer. Equation (6.16) is a good approximation
throughout the log layer and much of the defect layer. The model faithfully
predicts the ratio of the normal Reynolds stresses for boundary layers with ad-
verse pressure gradient where the ratios are quite different from those given in
Equation (6.16). Bardina, Ferziger and Reynolds (1983) have used an analog of
this stress/strain-rate relationship in their Large Eddy Simulation studies.

However, the model provides no improvement for flows over curved surfaces.
Also, because the nonlinear term has no effect on Tzy 1N a classical shear layer, it
would require a stress-limiter correction [cf. Equation (4.36)] to provide accurate
solutions for separated flows.

Speziale (1987b) proposes a nonlinear constitutive relation for the k- model
as follows (for incompressible flow):

2 k3 1
Tij = —gk'(igj -+ 2I/TS@J' + 405052— (SikSkj = gsmnsmnét-j)

k3 /o 1o

2

+4C‘EC'“;2—- (Sij ~3 Smm &;j) (6.17)
where Sz j 1s the frame-indifferent Oldroyd derivative of S;; defined by

§£j: 0S5i; a8y oU; G v %5}”’ (6.18)

ot + U Orr, Oz
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The closure coefficients C, and C are given by
Cp =Cg=1.68 (6.19)

Speziale’s nonlinear constitutive relation satisfies three key criteria that assure
consistency with properties of the exact Navier-Stokes equation.

1. Like the Saffman and Wilcox-Rubesin models, it satisfies general coordi-
nate and dimensional invariance.

2. It satisfies a limited form of the Lumley (1978) realizability constraints
(i.e., positiveness of k = —37;;).

3. It satisfies material-frame indifference in the limit of two-dimensional tur-
bulence. The latter consideration leads to introduction of the Oldroyd
derivative of S;;.

The appearance of the rate of change of 5;; in the constitutive relation is
appropriate for a viscoelastic-like medium. While, to some degree, the Speziale
constitutive relation includes rate effects, it still fails to describe the gradual
adjustment of the Reynolds stresses following a sudden change in strain rate.
For example, consider the Tucker-Reynolds flow discussed above. The Oldroyd
derivative of 5;; is given by

§yy:§zz: —2a?; all other §z‘j: 0 (6.20)

When the strain rate is abruptly removed, a = 0 and the Speziale model predicts
that the normal Reynolds stresses instantaneously return to isotropy. Hence, the
model is no more realistic than other eddy-viscosity models for such flows.

For flow over a curved surface, the contribution of the nonlinear terms in the
Speziale model to the shear stress is negligible. Consequently, this model, like
the Wilcox-Rubesin model, offers no improvement over the Boussinesq approx-
imation for curved-wall flows.

While the Speziale model fails to improve model predictions for flows with
sudden changes in strain rate and flows with curved streamlines, it does make a
dramatic difference for flow through a rectangular duct [see Figure 6.3(a)]. For
such a flow, the difference between 7., and 7, according to Speziale’s relation
is, to leading order,

B rouN?  [oUN\?
— 2
Taz — Tyy = CDC#Z'Q' !(-—"—az ) = (—8y) (6.21)
while, to the same order, the shear stresses are
au U 2 k38U U
Ty = VT_é"y_: Tzz = VT"az_? Tyz = CD “5_26—?}'5 (622)
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{a) Flow geometry (b} Secondary-flow streamlines

Figure 6.3: Fully developed turbulent flow in a rectangular duct. [From Speziale
(1991) — Published with the author’s permission.]

Having a difference between 7., and 7, is critical in accurately simulating
secondary motions of the second kind, i.e., stress-induced motions.2 Using his
model, Speziale (1987b) has computed flow through a rectangular duct. Fig-
ure 6.3(b) shows computed secondary-flow streamlines, which clearly illustrates
that there is an eight-vortex secondary-flow structure as seen in experiments.
Using the Boussinesq approximation, no secondary flow develops, so that the
Speziale model obviously does a better job of capturing this missing feature.
Although Speziale presents no comparison of computed and measured results,
the net effect of the nonlinear terms is very dramatic.

Speziale’s nonlinear constitutive relation also improves k-e model predictions
for the backward-facing step. Focusing on the experiment of Kim, Kline and
Johnston (1980), Thangam and Speziale (1992) have shown that using the non-
linear model with a low-Reynolds-number k-¢ model increases predicted reat-
tachment length for this flow from 6.3 step heights to 6.9 step heights. The
measured length is 7.0 step heights.

6.2.2 Algebraic Stress Models

Rodi (1976) deduces a nonlinear constitutive equation by working with a model
for the full Reynolds-stress equation [Equation (2.34)]. Rodi begins by approx-
imating the convective and turbulent transport terms for incompressible flow as

2By contrast, secondary motions of the first kind, by definition, are pressure driven, and can be
predicted by eddy-viscosity models.
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proportional to the Reynolds-stress component considered, i.e.,

O3 + Uy i (Vaﬁ: o Cz'jk)

ot Ox;,  Oxg Ox
LT[k, 0k 8 (o 1,

This approximation yields a nonlinear algebraic equation that can be used to
determine the Reynolds-stress tensor, viz.,

Tkﬂ {Tmn %g? = 6} = —Tik gg; = Tjkgi: + €55 — Il (6.24)
With suitable closure approximations for the dissipation tensor, ¢;;, and the
pressure-strain correlation tensor, II,;, Equation (6.24) defines a nonlinear con-
stitutive relation. A model derived in this manner is known as an Algebraic
Stress Model or, in abbreviated form, as an ASM.

One of the most inconvenient features of the traditional ASM is the fact
that it provides implicit equations for the several Reynolds stresses. Also, ex-
perience has shown that such models have unpleasant mathematical behavior.
Speziale (1997) explains how such models can have either multiple solutions or
singularities, defects that can wreak havoc with any numerical solver.

Gatski and Speziale (1992) regard such models as strain-dependent general-
izations of nonlinear constitutive relations, which can be solved explicitly to yield
anisotropic eddy-viscosity models. That is, an ASM can be written in a form
similar to Saffman’s expansion [Equation (6.11)]. The various closure coeffi-
cients then become functions of certain Reynolds-stress tensor invariants. Such
explicit algebraic stress models bear the acronym EASM — some authors prefer
EARSM. The complexity of the constitutive relation depends on the closure ap-
proximations, and alternative approximations have been tried by many researchers
[see Lakshminarayana (1986) or Speziale (1997)]. Gatski and Speziale describe
the methodology that can be used to deduce algebraic stress models. Building
on the procedures pioneered by Pope (1975), Gatski and Speziale argue that the
Reynolds-stress tensor can be approximated by

2 3 2 k3
Tij = ——Ekétj + [ k

3oz 1 ez | e Su toag (Sl + Sikll)

kS a 1 Yy 5
4053;5 (bik Skj — é‘Smmsmn(sij) (6:25)

where a1, a2 and a3 are constants that depend upon the stress-transport model
used. The quantities £ and 7 are

ke k



6.2. NONLINEAR CONSTITUTIVE RELATIONS 313

with the coefficients C¢ and C,, depending upon the ratio of production to dis-
sipation. As it turns out, this explicir model, like implicit models, can exhibit
singular behavior. Specifically, the Reynolds stresses can become infinite when

3212 4+662 — 0 (6.27)

To remove this shortcoming, Gatski and Speziale (1992) regularize the relation-
ship by using a Padé approximation [¢f. Bender and Orszag (1978)] whereby
3 5 3(1+7?)
3—212+662 7 3492+ 66292 + 6£2

(6.28)

These two algebraic relations are nearly identical for turbulent flows that are
close to equilibrium, i.e., for £ and n less than 1. However, the right-hand side
of Equation (6.28) remains finite for all values of ¢ and 7, which correspond to
strongly nonequilibrium flows. Subsequently, Speziale and Xu (1996) regularize
the relationship for consistency with Rapid Distortion Theory.?

When an ASM is used for a flow with zero mean strain rate, Equation (6.24)
simplifies to

ok
Tij = ‘g (Hij T Et'j) (6.29)

As we will discuss in Subsection 6.3.1, in the limit of vanishing mean strain
rate, the most common closure approximations for €;; and II;; simplify to

2
H:‘j — Cl% (T-,.jj + gkéﬁ) and €5 — g-ed,;- (630)

where C is a closure coefficient. Hence, when the mean strain rate vanishes,
the algebraic stress model simplifies to

' 2
Tij = _'gkaz‘j (6.31)

This shows that algebraic stress models predict an instantaneous return to
isotropy in the Tucker-Reynolds flow discussed above. Hence, like the Wilcox-
Rubesin and Speziale nonlinear constitutive relations, an ASM fails to properly
account for sudden changes in the mean strain rate.

Regarding secondary motions, the track record of algebraic stress models has
been a bit erratic. On the one hand, So and Mellor (1978) develop an ASM
that predicts most qualitative features and provides fair quantitative agreement
for flows with secondary motions as shown, for example, by Demuren (1991).
On the other hand, a recent study by Rung et al. (2000) cites shortcomings of

3The usefulness of Equation (6.28) is questionable since, as £ and 5 become large, the denominator
dominates and forces the Reynolds stress to zero, which will usually destabilize a computation.
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ASM predictions for secondary motions. The primary difficulty originates in a
closure-coefficient constraint that is not satisfied by many algebraic stress models.

One of the most successful applications of the ASM has been to flows in
which streamline curvature plays a significant role. So and Mellor (1978) and
Shur et al. (2000) show that excellent agreement between computed and measured
flow properties is possible using an ASM for boundary layers on curved surfaces
and for rotating channel flow. Jongen et al. (1998) have obtained reasonably
good agreement between computed and measured properties for flow through a
three-dimensional “S-duct,” which is a duct with a curved-wall section.

Another successful — and particularly impressive — application is for a
multi-element wing section. Figure 6.4 shows the NHLP 2D airfoil, which has
been analyzed by Hellsten (2005) using a k-w model and an EASM. Hellsten’s
computations were done for an angle of attack & = 20.18°, a Mach number of
0.197 and Reynolds number based on chord length of 3.52 - 10°.

Figure 6.4: Geometry of the NHLP 2D airfoil with lines indicating the stations
where total-pressure distributions have been measured. [From Hellsten (2005)
— Copyright © AIAA 2005 — Used with permission.]

Table 6.1 summarizes computed lift and drag coefficients as tabulated by
Hellsten (2005) for three k-w models enhanced with an EASM. The table also
includes results for the Wilcox (1988a) k-w model without an EASM. Interest-
ingly, while the three models that use an EASM predict a lift coefficient within
1% of the measured value, the Wilcox (1988a) model — without the aid of an
EASM — predicts a value of C, that is within 2% of the measured value. In
two cases, this 1% reduction in difference between theory and experiment has
been accomplished with a significant increase in the difference between com-
puted and measured drag coefficient, C,. While the k-w model without an

Table 6.1: Lift and Drag Coefficients for the NHLP 2D Airfoil.

[ Model | EASM | C, [ Difference | Cp [ Difference |
Hellsten (2005) k-w Yes 4.06 -1.2% 0.057 -16.2%
Menter (1992¢) k-w/k-¢ Yes 4.09 -0.5% 0.055 -19.1%
Rumsey (1998) k-w Yes 4.08 -0.7% 0.068 0.0%
Wilcox (1988a) k-w No 4.01 -2.4% 0.071 4.4%
Measured —_— 4.11 — 0.068 ——
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EASM predicts a drag coefficient just 4% higher than measured, the values for
the Hellsten (2005) and Menter (1992c) models is 16% and 19% lower than
measured, respectively. The computation by Rumsey et al. (1998) does not trade
a 1% improvement in C,, for a double-digit-percent deterioration in Cp.

Figure 6.5 compares computed and measured total-pressure coefficient dis-
tributions at the four points indicated in Figure 6.4. The solid curves labeled
“New k-w + EARSM” correspond to the Hellsten (2005) model, while the dotted
curves labeled “SST k-w” are for the Menter (1992¢) k-w/k-e model. Also, the
dashed curves labeled “BSL k-w + EARSM” correspond to a variant of the orig-
inal Menter hybrid model. The most significant point to be gleaned from these
graphs is how well the turbulence models reflect the complexity of the flow.
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Figure 6.5: Computed and measured total-pressure coefficients at the four sta-
tions on the NHLP 2D airfoil depicted in Figure 6.4. [From Hellsten (2005) —
Copyright (© AIAA 2005 — Used with permission.]
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Increasing the Mach number to 3, we find that algebraic stress model pre-
dictions are just as unreliable as the Menter (1992c¢) hybrid k-w/k-e model (cf.
Figure 5.18) with a stress limiter. To demonstrate this point, Rizzetta (1998) has
performed computations with models using an ASM for two flows. The first
is the Reda-Murphy (1972) Mach 2.90 shock-wave/boundary-layer interaction.
The second is the Kuntz et al. (1987) Mach 2.94 flow into a 24° compression
corner. Table 6.2 summarizes the six models tested by Rizzetta, three of which
use an ASM and three that do not.

Table 6.2: Designation of Turbulence Models in Rizzetta’s Computations.

{ Model | ASM | Designation |
Baldwin-Lomax (1978) Algebraic | No BL
Jones-Launder (1972) k- No JL
Speziale-Abid (1995) k-¢ No SA
Gatski-Speziale (1996) k-¢ Yes GS-ARS
Shih-Zhu-Lumley (1995) k-¢ Yes SZL-ARS
Crafi-Launder-Suga (1996) k-¢ Yes CLS-ARS

Figure 6.6 compares computed and measured surface-pressure distributions
for the two flows. Clearly, all three ASM models fail to yield a satisfactory
solution for either flow. To some extent, this is a reflection of the models having
the k-c model as their foundation. As shown in Section 5.6, this model features
a distorted law of the wall for compressible flows even for the simplest of all
compressible, wall-bounded flows, viz., the constant-pressure boundary layer.
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(2) Shock-Wave/Boundary-Layer Interaction (b) 24° Compression Corner

Figure 6.6: Computed and measured surface pressure for several k-¢ model
based turbulence models. [From Rizzetta (1998) — Copyright (© AIAA 1998 —
Used with permission.]
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Just as a stress limiter does nothing to help correct the model’s fundamental flaws
for compressible flows, so whatever advantages the ASM offers are obscured by
the shaky foundation provided by the k-e¢ model. As we will see in the next
subsection, with the possible exception of the Craft-Launder-Suga ASM, these
models should be expected to produce reasonable separation-bubble size when a
k-w model is used.

In summary, the primary advantage of nonlinear constitutive relations ap-
peats to be for flows with nontrivial streamline curvature and for predicting
the anisotropy of the normal Reynolds stresses. Algebraic stress models yield
greatly-improved prediction of flows with curved streamlines, both qualitatively
and quantitatively. Although quantitative agreement with measurements is some-
what less satisfactory, algebraic stress models are certainly applicable to flow in
ducts with secondary motions of the second kind, which models based on the
Boussinesq approximation are not.

The nonlinear stress models discussed in this section have potential for im-
proving computed results for separating and reattaching flows. However, while
the improvements attending use of a nonlinear constitutive relation with two-
equation models may be nontrivial, such relations cannot eliminate fundamental
flaws in the model with which they are implemented. For example, in the case
of an incompressible backward-facing step, while the k-e¢ model’s predicted reat-
tachment length is closer to the measured length when the Speziale, or any other,
nonlinear model is used, it is not clear that a better description of the physics of
this flow has been provided. After all, using the Boussinesq approximation, the
k-w model [see Section 4.10] gives an excellent backstep solution. Rizzetta’s
study of shock-separated flows further reinforces the fact that the k-e model
provides a greatly distorted mathematical representation of basic physical prop-
erties of turbulent flows that cannot be corrected with an ASM. By contrast,
the excellent shock-separated flow predictions [see Section 5.8] obtained with
the k-w model assisted only with a stress limiter strongly suggest that the k-e
model’s inaccuracy for such flows has nothing to do with the basic eddy-viscosity
assumption.

6.2.3 Relation to the Stress Limiter

The shock-induced separation computations discussed in the preceding subsec-
tion reveal an interesting feature of algebraic stress models. In such flows, the
dominant effect of the ASM is to limit the magnitude of the Reynolds shear
stress. Huang (1999) supplies the primary evidence supporting this claim. If we
write the eddy viscosity in terms of k-e¢ model variables, we have

kQ
(o = Cpﬁé— (6.32)
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Also, recall that the ratio of turbulence-energy production, Py, to dissipation,
Dy, in a thin shear layer is

Pe _ pr(@U/0y)? _ [Cuwz)i]z (633)
Dy pe €

Huang has examined the three algebraic stress models tested by Rizzetta, viz.,
the models developed by Gatski and Speziale (1996), Shih, Zhu and Lumley
(1995) and Craft, Launder and Suga (1996). Figure 6.7 shows the implied
variation of C,, with C;,'/2\/P./D; = (8U/8y)k/e for these three models
[UMIST corresponds to the Craft-Launder-Suga model] along with the variation
of C,, given by Menter’s version of the stress limiter [denoted by SST]. Huang’s
observations are consistent with the notion that the leading-order effect of an
ASM is to limit the Reynolds shear stress in a manner similar to what the stress
limiter does.
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Figure 6.7: Effective variation of C, with the ratio of turbulence-energy produc-
tion to dissipation ratio. [From Huang (1999) — Published with the author's
permission. |

The stress limiter, in its essence, is an empirical correction to the Boussi-
nesq approximation that greatly improves separated-flow predictions for the k-w
model * Ideally, an ASM would add sufficient additional physics to improve
upon the stress limiter. To get a glimpse into whether or not this is possible, it
is convenient to recast our discussion in terms of k-w model variables. In a thin
shear layer, the stress limiter is [see Equation (5.73)]

p . Clim OU
— — T N 6-34
L = @ = max {w, VB Oy } ( )

4 As discussed in the previous subsection, it is ineffective for the k-e¢ model.
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We can compute the effective value of C);,,, as a function of C,, and (8U/8y)k /e
by noting that when the stress limiter is active,

.- pk _ VB ek (6.35)
& Cum(0U/8y) /B~ Cum (OU/8y)k |
Then, using Equation (6.32), we can solve for Cj;m, Viz.,

2 F 2 *
G . Vi (6.36)

¢  Cum@U/BYE Cunm = oaU o)k /e

Yoz

Figure 6.8 shows the implied variation of C,;,,, with /Px/ D, for the four models
included in Figure 6.7 and for the Wilcox (2006) k-w model. The implied Cy;,,
values suggest the following regarding the three algebraic stress models.

e Since Clim, almost always exceeds 1.0 for the Craft-Launder-Suga ASM,
it will normally yield separation bubbles at least as large as those of the
Menter k-w/k-e model. Rizzetta’s computations confirm this since — like
Menter’s model — this ASM yields separation bubbles that are about
double the measured size for Mach 3 shock-separated flows.

» Since the asymptotic value of Cy;,, for large /Dy is smallest for the
Gatski-Speziale ASM, its separation bubbles should be the smallest of the
three for shock-separated flows. Rizzetta’s computations confirm this also.
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Figure 6.8: Inferred stress-limiter strength, Cy,.: —— Wilcox (2006) k-w;
-+ - Menter; — - Craft-Launder-Suga, - -- Gatski-Speziale; — -— Shih-Zhu-Lumley.
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We saw in Chapters 4 and 5 that selecting a value for the stress-limiter
strength, Ciim, equal to 1 works reasonably well for incompressible and tran-
sonic flows, but yields separation bubbles that are typically twice the measured
length for supersonic and hypersonic flows. By contrast, selecting Ciirm = 7/8
is a satisfactory compromise that yields acceptable separated-flow predictions
from incompressible through hypersonic flow regimes. Nevertheless, numerical
experimentation with the Wilcox (2006) k-w model reveals the following.

e Using Ciim = 1 reduces discrepancies between computed and measured
flow properties for axisymmetric flows, e.g., Figures 4.45, 5.13 and 5.20.

e Using Ciim =~ 0.95 reduces discrepancies between computed and measured
flow properties for hypersonic flows.

By design, the Wilcox (2006) k-w model can immediately accommodate
an ASM in place of the stress limiter. This is true because its stress limiter
has no impact on anything other than the Reynolds-stress tensor. For the same
reason, it can serve, without modification as the foundation of a stress-transport
model (Subsection 6.3.3). More research is needed to establish an algebraic
stress model with sufficient generality to remove the limitations attending the
otherwise successful stress limiter.

6.2.4 Lag Model

Olsen and Coakley (2001) have developed an interesting model that is reminiscent

of the Shang and Hankey (1975) and Hung (1976) relaxation eddy viscosity

models [see Equations (3.146) and (3.147)). They postulate the following first-

order equation for the kinematic eddy viscosity.

Ovr ( k
aw

— — UT) ; a = 0.35 (6.37)
w

Ovy

ot * UJ ox 3 o
While this equation can be used in conjunction with any turbulence modei, Olsen
and Coakley have confined their applications to the Wilcox (1988a) k-w model.®
By introducing a lag between the “equilibrium” eddy viscosity, k/w, and the
“non-equilibrium” value, v, the lag model permits adjustments to flow condi-
tions following a fluid particle. It is thus capable of accurately describing flows
with sudden changes in mean strain rate, which an ASM cannot. Model ap-
plications show that, similar to the stress limiter, it limits the magnitude of the
Reynolds shear stress in strong adverse-pressure-gradient flows.

>To improve model predictions near a turbulent/nonturbulent interface, the lag model increases the
turbulenice kinetic energy diffusion coefficient ¢* from 0.5 to 1.5. The model is otherwise identical
to the version presented by Wilcox (1988a).
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Figure 6.9 compares computed and measured surface-pressure distributions
for the Bachalo-Johnson (1979) transonic-bump experiments. The figure includes
results for three freestream Mach numbers and four turbulence models, viz., the
Lag model, the Wilcox (1988a) k-w model, the Menter (1992¢) k-w/k-¢ model
and the Spalart-Allmaras one-equation model. For all three Mach numbers, the
Lag model accurately predicts the location of the shock waves, and arguably
provides the best overall agreement with measurements of the four models.
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Figure 6.9: Computed and measured surface pressure for transonic flow over
a bump: Olsen-Coakley (2002) Lag model; — - -- Wilcox (1988a) k-w
model; — — — Menter (1992c) k-w/k-€ model; - --- . Spalart-Allmaras (1992)
one-equation model. [From Olsen and Coakley (2001) — Published with the
authors’ permission.]

Olsen, Lillard and Coakley (2005) have tested the lag model for several
high-speed flows including the Mach 7 cylinder-flare experiment of Kussoy and
Horstman (1989), an overexpanded nozzle and Mach 6 flow past the Space
Shuttle Orbiter at a 40° angle of attack. In general, the lag model reduces
discrepancies between predictions based on the Wilcox (1988a) k-w model and
predicts separation bubbles that are much closer to measured size than the Menter
(1992¢) k-w/k-€ model. Most important, the surface heating rates are reasonably
close to measured rates both for the Kussoy-Horstman application and for the
Space Shuttle Orbiter.

While the results obtained to date are encouraging, soon-to-be-published ap-
plications to shock-separated flows at Mach 3 indicate that the model’s predicted
separation bubbles are significantly larger than measured. This indicates that fur-
ther development and refinement of this promising approach are needed.
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6.3 Stress-Transport Models

Although posing a more formidable task with regard to establishing suitable clo-
sure approximations, there are potential gains in universality that can be realized
by devising a stress-transport model. In general turbulence-modeling literature,
such models are often referred to as second-order closure or second-moment
closure models. As we will see, stress-transport models naturally include effects
of streamline curvature, sudden changes in strain rate, secondary motions, etc.
We will also see that there is a significant price to be paid in complexity and
computational difficulty for these gains.

Virtually all researchers use the same starting point for developing such a
model, viz., the exact differential “transport” equation describing the behavior
of the specific Reynolds-stress tensor, 7;; = —u/ 'u, . Note that, as we have done
throughout this book and consistent with common practlce we usually drop the
term “specific” in referring to 7;;. As shown in Chapter 2, the incompressible
form of the exact equation is

0735 6733 _ oU; U, 8 [ oy r
ot +U, 6 e, = —Tik BT —Tik e +613“H13+6mk l N =5 C%Jk (6.38)
where
p [ Ou, Ou
L=~z " 72 6.39
¢ P (83:3 Ea 8.’153' ( )
3'u, Bu
= 6.40
c aﬂlk amk ( )
pCijk = pujuliuy + puidin + p'u) ol b (6.41)

Inspection of Equation (6.38) shows why we can expect a stress-transport
model to correct some of the Boussinesq approximation’s shortcomings. First,
since the equation automatically accounts for the convection and diffusion of
Tij» @ stress-transport model will include effects of flow history. The dissipa-
tion and turbulent-transport terms indicate the presence cf time scales unrelated
to mean-flow time scales, so history effects should be more realistically rep-
resented than with a two-equation model. Second, Equation (6.38) contains
convection, production and (optionally) body-force terms that respond automati-
cally to effects such as streamline curvature, system rotation and stratification, at
least qualitatively. Thus, there is potential for naturally representing such effects
with a well-formulated stress-transport model. Third, Equation (6.38) gives no
a priori reason for the normal stresses to be equal even when the mean strain
rate vanishes. Rather, their values will depend upon initial conditions and other
flow processes, so that the model should behave properly for flows with sudden
changes in strain rate.
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Chou (1945) and Rotta (1951) were the first to accomplish closure of the
Reynolds-stress equation, although they did not carry out numerical computa-
tions. Many researchers have made important contributions since their pioneering
efforts. Two of the most important conceptual contributions have been made by
Donaldson and Lumley. Donaldson [cf. Donaldson and Rosenbaum (1968)] was
the first to advocate the concept of invariant medeling, i.e., establishing closure
approximations that rigorously satisfy coordinate invariance. Lumley (1978) has
tried to develop a systematic procedure for representing closure approximations
that guarantees realizability, i.e., that all physically positive-definite turbulence
properties be computationally positive definite and that all computed correlation
coefficients lie between +1. However, while being generally supportive of the
concepts involved, Speziale, Abid and Durbin (1994) have cast doubt on some
aspects of the Lumley approach.

6.3.1 Closure Approximations

To close Equation (6.38), we must model the dissipation tensor, ¢; 4» the turbulent-
transport tensor, C;;x, and the pressure-strain correlation tensor, I1;;. Because
cach of these terms is a tensor, the approximations required for closure may be
much more elaborate than the approximations used for the simpler scalar and
vector terms in the k£ equation. In this subsection, we will discuss some of the
most commonly used closure approximations.

Dissipation: Because dissipation occurs at the smallest scales, most modelers
use the Kolmogorov (1941) hypothesis of local isotropy, which implies

€ij = ;*E(S?;j (642)
where

F !
, oul ou!

Oxp Oz

€E=1 (6.43)
The scalar quantity € is the dissipation rate appearing in the turbulence kinetic
energy equation of standard two-equation models. This becomes evident upon
contracting Equation (6.38) to form an equation for £ = — ;2’7'1'3'. As with simpler
models, we must establish a procedure for determining ¢. In most of his work,
for example, Donaldson specified € algebraically, similar to what is done with a
one-equation model.

As a final observation, most researchers use the ¢ equation as formulated for
the k-e model. Wilcox and Rubesin (1980), Wilcox (1988b) and Wilcox (1998)
compute ¢ by using an equation for the specific dissipation rate, w.
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Since dissipation is in reality anisotropic, particularly close to solid bound-
aries, efforts have been made to model this effect. Generalizing a low-Reynolds-
number proposal of Rotta (1951), Hanjali¢ and Launder (1976) write®

2
€ij = ;1;65,;_,‘ + 2 fsebi; (6.44)

where b;; is the dimensionless Reynolds-stress anisotropy tensor, viz.,

wu! — 2ké;;
by = _‘3_2_;_ (6.45)

Also, fs is a low-Reynolds-number damping function, which they choose empir-
ically to vary with turbulence Reynolds number, Re, = k2/(ev), as

1 -1
Js = (1 + —lﬁReT) (6.46)

Turbulert Transport: As with the turbulence kinetic energy equation, pres-
sure fluctuations, as well as triple products of velocity fluctuations, appear in the
tensor C'jx. Pressure fluctuations within the fluid cannot be measured with any
assurance of accuracy, so there are no experimental data to provide any guid-
ance for modeling the pressure-correlation terms. Currently-available DNS data
seem to support neglecting pressure fluctuations. Traditionally, they are effec-
tively ignored. The most common approach used in modeling C;;, 1s to assume
a gradient-transport process. Daly and Harlow (1970), argue that the simplest
tensor of rank three that can be obtained from the second-order correlation 7;; is
0T /Oxk, and make the following approximation.

6’7‘3‘3'
Bgzk

O@jk oC (6.47)
This form, although mathematically simple, is inconsistent with the fact that C';x
is symmetric in all three of its indices, i.e., it is rotationally invariant [provided
pressure fluctuations are neglected — see Equation (6.41)].

To properly reproduce the symmetry of C;;x, Donaldson (1972) postulates

Brjk + 87% + 6’?'7;:,‘

oz, Ox; Oz (6:43)

C@jk 6.4

This tensor has the proper symmetry, but is not dimensionally correct. We require
a factor whose dimensions are length?/time — a gradient diffusivity — and the
ratio of k?/e has been employed by Mellor and Herring (1973) and Launder,

5Note that b;; = 0 and &;; = 3 so that Equation (6.44), like Equation (6.42), gives ¢;; = 2e.
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Reece and Rodi (1975). Using the notation of Launder et al., the final form of
the closure approximation is

(6.49)

Cise = ?_C‘gfcf_ [a?'jk " OTik N 873-5,-}
3 € | Ox; Or;  Oxyp
where C; =~ 0.11 is a scalar closure coefficient.
Launder, Reece and Rodi also postulate a more general form based on analysis
of the transport equation for Cj;x. Through a series of heuristic arguments, they
infer the following alternative closure approximation:

k OTik OTik OTij
Cijr = *—C; P [Tima_i" ijﬁ Thkm éﬁ} (6.50)
where C), = 0.25 is also a scalar closure coefficient. Note that optimizing C and

C} implies that any pressure diffusion is combined with triple-product diffusion.

Pressure-Strain Correlation: The tensor II;; defined in Equation (6.39),
which is often referred to as the pressure-strain redistribution term, has re-
ceived the greatest amount of attention from turbulence modelers. The reason
for this interest is twofold. First, being of the same order as production, the
term plays a critical role in most flows of engineering interest. Second, because
it involves essentially unmeasurable correlations, a great degree of ingenuity is
required to establish a rational closure approximation.

To determine pressure fluctuations in an incompressible flow we must, in
principle, solve the following Poisson equation for p’.

i 2 4 6Uz’ 61"’; 82 I T
= = o = A — whul S
pv p 28.’133 8-’1.‘1'_ 833;’831‘5; (’U,,,:_’U,J utuj) (6 2 )

This equation follows from taking the divergence of the Navier-Stokes equation,
using the continuity equation and subtracting the time-averaged equation from
the instantaneous equation.

As an aside, note that in a compressibie flow, these operations lead to a
transport equation for the divergence of uj, viz., du)/O8zr;. Equation (6.51),
depending upon du;/dx; = 0, is a degenerate case. This is consistent with the
fact that pressure signals travel through a fluid at the speed of sound, which
is infinite for Mach number approaching zero. Hence, we should expect the
fluctuating pressure to be governed by an elliptic equation such as Equation (6.51)
for incompressible flow. By contrast, pressure signals travel at finite speed in a
compressible flow. Thus, we should expect the pressure fluctuations to satisfy
a transport equation, which is typically hyperbolic in nature, for compressible

flows.
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The classical approach to solving Equation (6.51) is to write p’ as the sum
of two contributions, viz.,

p’ = p;low . p:‘api.d (6‘52)

By construction, the slow and rapid pressure fluctuations satisfy the following
equations.

1_, a2
:O_v pfslcw = T 3. 9. (u;u; - u;u") (653)

(6.54)

The general notion implied by the nomenclature is that changes in the mean
strain rate contribute immediately to p], ., because the mean velocity gradient
appears explicitly in Equation (6.54). By contrast, such effects are implicitly
represented in Equation (6.53). The terminology slow and rapid should not be
taken too literally, however, since in real- llfe ﬂows the mean strain rate does not
necessarily change more rapidly than wju}.

For homogencous turbulence, these equations can be solved in terms of ap-
propriate Green’s functions, and the resulting form of IL;; is

oUx

13 == Aaj + Mtjkl D T

(6.55)
where A;; is the slow pressure strain and the tensor M;; k10U [ Ox; is the rapid
pressure strain. The tensors A;; and M;;x; are given by the following.

3 / 82 (ujwy) dy
Ay ~ An f// (833 :L‘z) SOy |x -y| (6:39)
du; d3y
i 6.57
Mgkl = /ff (3373 ) Oyk |x - Y| {650

The integration range for Equations (6.56) and (6.57) is the entire flowfield.
For inhomogeneous turbulence, the second term in Equation (6.55) becomes an
integral with the mean velocity gradient inside the integrand. This emphasizes
a shortcoming of single-point closure schemes that has not been as obvious in
any of the closure approximations we have discussed thus far. That is, we are
postulating that we can accomplish closure based on correlations of fluctuating
quantities at the same physical location. The pressure-strain correlation very
clearly is not a localized process, but rather, involves contributions from every
point in the flow. This would suggest that two-point correlations, i.e., products
of fluctuating properties at two separate physical locations, are more appropriate.
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Nevertheless, we expect contributions from more than one or two large eddy
sizes away to be negligible, and this would effectively define what is usually
referred to as the locally-homogeneous approximation. Virtually all modelers
assume that turbulent flows behave as though they are locally homogeneous, and
use Equation (6.55).

The forms of the tensors A; 5 and M ;x; must adhere to a variety of constraints
resulting from the symmetry of indices, mass conservation and other kinematic
constraints. We know, for example, that the trace of I1;; must vanish and this is
true for the slow and rapid parts individually. Rotta (1951) postulates that the
slow pressure-strain term, often referred to as the return-to-isotropy term, is
given by

€ 2
Aﬁj = C]E (Tij + gkﬁu) (658)

where (1 is a closure coefficient whose value can be inferred from measurements
[Uberoi (1956)] to lie in the range

14<C; <18 (6.59)

Turning now to the rapid pressure straim, early research efforts of Donald-
son [Donaldson and Rosenbaum (1968)], Daly and Harlow (1970), and Lumley
(1972) assume that the rapid pressure strain is negligible compared to the slow
pressure strain. However, Crow (1968) and Reynolds (1970) provide simple ex-
amples of turbulent flows for which the effect of the rapid pressure strain far
outweighs the slow pressure strain.

Launder, Reece and Rodi (1975) have devised a particularly elegant closure
approximation based almost entirely on kinematical considerations. Building
upon the analysis of Rotta (1951), they write M ;51 in terms of a tensor Qijkl S
follows.

Mijkt = Qijra + ajs (6.60)

This relation is strictly valid only for homogeneous turbulence. Rotta demon-
strated that the tensor a;;x; must satisfy the following symmetry and normaliza-
tion constraints:

Qijkl = Aljki = Akj; (symmetry) (6.61)
aiiet =0, a5 = 27y (normalization) (6.62)

Launder et al. propose that the fourth-rank tensor @ijkxt can be expressed as a
linear function of the Reynolds-stress tensor. The most general tensor, linear in
Tij, satisfying the symmetry constraints of Equation (6.61) is

Qijkt = —Qlk;Tii — B0k Tij + S5y + OikTy + 0i5Tik)
—C201 Tk + [7?551;51;3' 4 v(égkc?ij + &1 0:1) |k (6.63)
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where a, 8, Cs, n and v are closure coefficients. Invoking the conditions of
Equation (6.62), all of the coefficients can be expressed in terms of Cs, viz.,,

L _ 102 +10 ﬁ__302+2 _ _50C3+4 2003 +6
T 1 PT T T 1T 55 * 55

Finally, combining Equations (6.60) through (6.64), we arrive at the well-known
LRR model for the rapid pressure strain.

(6.64)

LRR Rapid Pressure-Strain Model:

U . 1 - 1 A
Mijkla—m’ = —& (R;j -3 kk‘sﬁj) =43 (Dij -~ §Dkk5ij) — AkS;;  (6.65)

AU aU; U, AUy,

— + Tjmag— and Dy =71im—— + Tjm—7—
6.‘Em Jm&cm ij Tim amj + jm 659,;

8 + s A_802—2 A_6002—4

i PT T 0 7T e
Note that for compressible flows, the mean strain-rate tensor, S;;, is usually
replaced by S;; — 3 Skrdi; in Equation (6.65).

One of the most remarkable features of this closure approximation is the
presence of just one undetermined closure coefficient, namely, C2. The value
of C5 has been established by comparison of model predictions with measured
properties of homogeneous turbulent flows. Launder, Reece and Rodi (1975)
suggested using Cy = 0.40. Morris (1984) revised its value upward to C; =
0.50, while Launder (1992) recommends C2 = 0.60. Section 6.4 discusses the
kind of flows used to calibrate this model.

Bradshaw (1973b) has shown that there is an additional contribution to Equa-
tions (6.56) and (6.57) that has a nontrivial effect close to a solid boundary. It
is attributed to a surface integral that appears in the Green’s function for Equa-
tion (6.51), equivalent to a volume integral over an identical “image” flowfield
below the solid surface. This has come to be known as the pressure-echo effect
or wall-reflection effect. Launder, Reece and Rodi (1975), and most others until
recently, propose a near-wall correction to their model for II;; that explicitly in-
volves distance from the surface. Gibson and Launder (1978), Crafi and Launder
(1992) and Launder and Li (1994) propose alternative models to account for the

pressure-echo effect. For example, the LRR wall-reflection term, HE;.“'), 1s

Pij = Tim (666)

& =

0.4 < Cy < 0.6 (6.67)

{w) € 2 k3/2
where n is distance normal to the surface.
More recent efforts at devising a suitable closure approximation for II;; have

focused on developing a nonlinear expansion in terms of the anisotropy tensor,
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bij, defined in Equation (6.45). Lumley (1978) has systematically developed
a general representation for Il;; based on Equations (6.51) through (6.57). In
addition to insisting upon coordinate invariance and other required symmetries,
Lumley insists upon realizability. As noted earlier, this means that all quantities
known to be strictly positive must be guaranteed to be positive by the closure
model. Additionally, all computed correlation coefficients must lie between +1.
This limits the possible form of the functional expansion for I1;;. Lumley shows
that the most general form of the complete tensor 11, ; for incompressible flow is
as follows.

Lumley Pressure-Strain Model:
1
Hz’j = GOEbij -+ aje (bikbjk S 511(513) -+ (12}683?3‘
+k (azbriSik + asbribim Smi) bi;

) 1
+k (asbri St + abribim Smk) (bz’kbkj — gflaij)
2
+ark (bs’ijk + bk S — §bszzk(5z'j)

2
+agk (bt‘kbklsji + bikbriSu — Ebkzbzmsmkéij)
+a9k (bikS2jk + bjkQik) + a10k (birbriQjs + b;xbriSi) (6.69)

The eleven closure coefficients are assumed to be functions of the tensor
invariants /7 and 171, ie.,

a; = (1,;(11, III), = bz‘jbz’j, Il = bikbk(bﬁ (670)

The tensor €2;; is the mean rotation tensor defined in Equation (6.12). The LRR
model can be shown to follow from Lumley’s general expression when nonlinear
terms in b;; are neglected, i.e., when all coefficients except ag, az, ar and ag
are zero.

A similar, but simpler, nonlinear model has been postulated by Speziale,
Sarkar and Gatski (1991). For incompressible flows, this model, known as the
SSG model, is as follows.

SSG Pressure-Strain Model:

U, 1
Hij == (O]E + Cikﬂnn?) bz‘j + 026 (b,;kbkj - gbnanbmnéij)

2
+ (C'a — O:;‘VII) kSi; + Cak (bz’k:sjk + bkSik — 35mn5mn5ij)

+C5k(bie5x + bielix)  (6.71)
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C1 = 3.4, Cf = 1.8, C; =4.2, C3 =0.8 } (6.72)

C3=13, Ci=125 (C3=04

Interestingly, the SSG model does not appear to require a correction for the
pressure-echo effect in order to obtain a satisfactory log-layer solution.

Many other proposals have been made for closing the Reynolds-stress equa-
tion, with most of the attention on II;;. Weinstock (1981), Shih and Lumley
(1985), Haworth and Pope (1986), Reynolds (1987), Shih, Mansour and Chen
(1987), Fu, Launder and Tselepidakis (1987) and Craft et al. (1989) have for-
mulated nonlinear pressure-strain correlation models.

As with the k-e model, low-Reynolds-number damping functions are needed
to integrate through the sublayer when the € equation is used. Damping functions
appear in the pressure-strain correlation tensor as well as in the dissipation. So
et al. (1991) give an excellent review of stress-transport models including low-
Reynolds-number corrections. Compressibility, of course, introduces an exira
complication, and a variety of new proposals are being developed.

While the discussion in this subsection is by design brief, it illustrates the
nature of the closure problem for stress-transport models. Although dimensional
analysis combined with physical insight still plays a role, there is a greater
dependence upon the formalism of tensor calculus. To some extent, this approach
focuses more on the differential equations than on the physics of turbulence. This
is necessary because the increased complexity mandated by having to model
second and higher rank tensors makes it difficult to intuit the proper forms solely
on the strength of physical reasoning. Fortunately, the arguments developed
during the past decade have a stronger degree of rigor than the drastic surgery
approach discussed in Subsection 4.3.2.

Increasingly, stress-transport models are being tested for nontrivial flows.
The paper by Schwarz and Bradshaw (1994), for example, illustrates the actual
performance of some of these models in three-dimensional boundary layers. So
and Yuan (1998) test 8 two-equation models and 3 stress-transport models for
flow past a backward-facing step. The studies by Parneix et al. (1998) and
Gerolymos et al. (2004a, 2004b) also provide useful assessments of modern
stress-transport models.

6.3.2 Launder-Reece-Rodi Model

The model devised by Launder, Reece and Rodi (1975) is the best known and
most thoroughly tested stress-transport model based on the e equation. Many
stress-transport models are based on the LRR model and differ primarily in the
closure approximation chosen for II;;. Combining the closure approximations
discussed in the preceding subsection, we have the following high-Reynolds-
number, compressible form of the model.
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Reynolds-Stress Tensor:

Bri . Ot N 2 _ -

o |[pk OTjk Otix O )
—Cym— | = {73, —2F Wi . o8, 6.73
. [ . (’T Bz, s 5o + Tk 97 (6.73)

Dissipation Rate:

_Be _ Pe pe O pe2 o [pk O¢
e e OE Tl T e — € a .
pc'?t i s B:Ej ! k 7i3 8:123' 2 k C 6:1:k € e B:L'm (6 74)

Pressure-Strain Correlation:

2
H;‘j = C1—E~ (‘Tij + —kéij)

2
k 3 (P“" a EP‘S"J")

- &
- 2 . 1
=0 (Dz'j - 5105;‘3') - 4k (Sfij - E),-Skkcs.-:j)

- 2 k3/2
+ 0.120;(7}‘3‘ + gké{j) — 0.015(}3@3‘ — ng) _Ch'n,_ (6.75)
Auxiliary Relations:
O ; Ot; : Ot Ot 1
P = Tim“"_ax:l T D;; = Tz’m“_'_'ax? +ij‘“‘—8;= P = 5P (676)

Closure Coefficients [Launder (1992)]:

& =(8+Cy)/11, B=(8Cy—2)/11, 4 = (60C, —4)/55
Ci = 1.8, Cy = 0.60, C, =0.11 (6.77)
€ =018, Ce1 = 1.44, Ceo =1.92

Note that Equation (6.74) differs from the € equation used with the Standard
k-¢ model [Equation (4.48)] in the form of the diffusion term. Rather than
introduce an isotropic eddy viscosity, Launder, Reece and Rodi opt to use the
analog of the turbulent transport term, C;. The values of the closure coefficients
in Equation (6.77) are specific to the LRR model of course, and their values are
influenced by the specific form assumed for IT;;. In their original paper, Launder,
Reece and Rodi recommend Cy = 1.5, Cy = 0.4, C, = 0.11, C, = 0.15,
Cer = 144 and Cp = 1.90. The values quoted in Equation (6.77) are those
recommended by Launder (1992).
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6.3.3 Wilcox Stress-w Model

Not all stress-transport models use the ¢ equation to compute the dissipation.
Wilcox and Rubesin (1980) postulate a stress-transport model based on their w?
equation and the LRR model for II;;, with € = 3*wk. Although the model
showed some promise for flows over curved surfaces and for swirling flows,
its applications were very limited. More recently, Wilcox (1988b) proposed a
stress-transport model, known as the multiscale model, that has had a wider
range of application. While the multiscale model proved to be as accurate as
the k-w model for wall-bounded flows, including separation, its equations are
ill conditioned for free shear flows. Subsequently, Wilcox (1998) introduced the
Stress-w model, which removed the multiscale model’s deficiencies.

This section introduces a revised version of the Stress-w model. The high-
Reynolds-number, compressible version of the model is as follows. Note that,
by design, aside from the equation for the Reynolds-stress tensor replacing the
stress-limiter, the underlying equations for k and w are identical to those of the
Wilcox (2006) k-w model.

Reynolds-Stress Tensor:

..6'7'1'_;6 o 8‘7’1’3‘ X 2 2] 87-]
't 5 = —pP;; L o B ol * 1J
(6.78)
Specific Dissipation Rate:
Ow . Ow  pw By _ 9 p Ok Ow
O T Py, M gy, TP O G s
| %) Bw '
. — 6.79
+833k [(N+U#T) 8$k] ( )
Pressure-Strain Correlation:
. 2 ) 2
Hz’j = 6 Chw Tig <t ‘3",{51;;' -« P{j — gPéﬁJ
" 2 . 1
._{B (Dz'j - §P‘5¢3) —"}/k (S{j — §Skk5£j) (680)
Auxiliary Relations:
pr = pkjw (6.81)
Ot Ot Ju ol 1
P = T +Tim o s ii = Tirn T AL == fa 6.82
T, Er +7; Bz, DJ T, 8:rzj +Tim s T A QPkk ( )

Closure Coefficients:

&= (8+Cy)/11, B=(8Co—2)/11, %= (60C,—4)/55  (6.83)
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9 10
Cy = 5 Ca= 10 (6.84)
13 - . 9 1, 3 1
a_““g& fﬁ_‘ﬁOf.G: ﬁ - Eﬁa a = 5: g "“"5—1 Odo = é‘ (6'85)
g, B0 g
B, = 0.0708, o4 = bz; 0a; (6.86)
o = 1 d = i ak &J* . 0 *
dg ij 83:,- ’
14 85x. Qi_ijkgkz’ 2 1 Oty
_ 203 - i = Ghy— 2. (6.8
fa 15 100y 5 o8 BFw? | Ski = Sk 5 me(sk (6.87)

All closure coefTicients shared by the k-w and Stress-w models have the same
values. The values chosen for &, 3 and 4 are those used in the original Launder,
Reece and Rodi (1975) pressure-strain correlation model. This means there are
two new closure coefficients to be determined, namely, Cy and Cs.

In analyzing the Stress-w model’s sublayer predictions (see Subsection 6.6.1),
we find that the constant in the law of the wall, C, depends on the values of o
and C5. Retaining ¢ = 1/2 from the k-w model, selecting C> = 10/19 yields
C = 5.5 with no viscous damping functions. The traditional procedure for
determining C; and Cs is to appeal to measurements of homogeneous turbulent
flows, which we do in the next section. Because we have selected C5 to optimize
sublayer predictions, in addressing homogeneous turbulence, we effectively seck
the optimum value of C that is compatible with C, = 10/19.

Unlike the LRR model, the Stress-w model does not require a wall-reflection
term such as H,(;;") defined in Equation (6.68). By design, the most significant
difference between the LRR and Stress~v models is in the scale-determining
equation. The LRR model uses the € equation while the Stress-w model uses
the w equation. All other differences are minor by comparison. This strongly
suggests that the end accomplished by the LRR wall-reflection term may be
to mitigate a shortcoming of the model equation for e rather than to correctly
represent the physics of the pressure-echo process [see Parneix et al. (1998)].

Before proceeding to applications, it is worthwhile to pause and discuss two
guidelines followed in formulating the Stress-w model. First, a key objective is to
create as simple and elegant a stress-transport model as possible. This dictates use
of the LRR model for I1;;, for example, but certainly does not preclude the use of
a nonlinear model such as that developed by Speziale, Sarkar and Gatski (1991).
Similarly, the Daly-Harlow (1970) approximation for C, could be replaced by
a rotationally-invariant form with little additional cffort. Second, because of the
k-w model’s good predictions for a wide range of turbulent flows, the Stress-w
model is designed to resemble the k-w model to as great an extent as possible
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for the flows to which both models apply. As we will see in the following
sections, its predictions for free shear flows and attached boundary layers are
usually within less than 5% of k-w model predictions. Also, low-Reynolds-
number modifications and surface boundary conditions for rough surfaces and
for mass injection are very similar to those used with the k-w model.

6.4 Application to Homogeneous Turbulent Flows

Homogeneous turbulent flows are useful for establishing the new closure coef-
ficients introduced in modeling the pressure-strain correlation tensor, I1;;. This
is the primary type of flow normally used to calibrate a stress-transport model.
Recall that homogeneous turbulence is defined as a turbulent flow that is statis-
tically uniform in all directions. This means that the diffusion terms in all of
the equations of motion are identically zero, as is the pressure-echo correction.
Hence, the only difference between the e-based LRR model and the w-based
Stress-w model when applied to homogeneous turbulent flows is in the scale-
determining equation. That is, both models use the LRR pressure-strain model
and the Kolmogorov isotropy hypothesis for €;;, so that the equations for the
Reynolds stresses are nearly identical, with C; lying within the range of values
recommended for the LRR model, viz., between 0.4 and 0.6.

Additionally, since the diffusion terms vanish, the equations simplify to first-
order, ordinary differential equations, which can sometimes be solved in closed
form. At most, a simple Runge-Kutta integration is required. Such flows are
ideal for helping establish values of closure coefficients such as C; and Cz in
the LRR model, provided of course that we believe the same values apply to
all turbulent flows. As noted in the preceding section, we have already selected
C, = 10/19 for the Stress-w model. Hence, we seek the optimum value for 1
compatible with this value of Cs.

The simplest of all homogeneous flows is the decay of isotropic turbulence,
which we discussed in Section 4.4 and used to set the ratio of 3* to 3, for the
k-w model. The Stress-w model equations for k£ and w simplify to

dk dw 9
* sz .88
Thae 8wk and T Bow (6.88)

For large time, the asymptotic solution for k according to the Stress-w and LRR
models is given by

k ~ t—8" /80 and k ~ t—1/(Cez—1) (6.89)

Experimental observations summarized by Townsend (1976) indicate that turbu-
lence energy varies according to k ~ ¢~ ™ where n = 1.25 + 0.06 for decaying
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homogeneous, isotropic turbulence. Hence, we can conclude that our closure
coefficients must lie in the following ranges.

L.19< B*/B, <131, 1.76 < C.. < 1.84 (6.90)

The Stress-w model’s chosen values for 3, and 3* [Equations (6.85) and (6.86)]
give 3 /B, = 1.27, which satisfies Equation (6.90). However, the value chosen
for Cc2 in the LRR model is 1.92, which lies outside the range indicated in
Equation (6.90).

Figures 6.10(a) and (b) compare computed and measured % for decaying
homogeneous, isotropic turbulence as predicted by the Stress-w model. The
experimental data in (a) and (b) are those of Comte-Bellot and Corrsin (1971)
and Wigeland and Nagib (1978), respectively.
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(@) w(0) = 502 sec—! (b) w(0) = 2980 sec—1

Figure 6.10: Computed and measured decay of turbulence energy for homoge-
neous, isotropic turbulence: — Wilcox (2006) Stress-omega model; o Comte-
Bellot and Corrsin (1971); e Wigeland and Nagib (1978).

Because the equations we solve for homogeneous shear flows are initial-
value problems, the entire solution is affected by the assumed initial conditions,
especially the initial value of € or w. Estimates of the initial dissipation rate,
€0, are often quoted for homogeneous turbulence experiments. However, any
errors in these estimates can have a large effect on the solution at all subsequent
times. An alternative method for setting initial conditions is to estimate €, from
the differential cquation for k at the initial station. In the case of homogenous
isotropic turbulence, this means

dk\ - ‘ 1 /1dk
€o = — (E)o or Wo = _——ﬁ_’: (‘E Efj)a (691)

The initial value of w has been selected to match the initial shape of the measured
curves for the two cases, and the inferred values are quoted in Figure 6.10.
Computed and measured values of k are within 5% for both cases.
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The second type of homogeneous turbulent flow that is useful for estab-
lishing the value of pressure-strain correlation closure coefficients is decaying,
anisotropic turbulence. Such flows are created in the laboratory, for example,
by subjecting turbulence to uniform strain-rate, which yields unequal normal
Reynolds stresses. The turbulence then enters a region free of strain, and grad-
ually returns to isotropy. The Tucker-Reynolds (1968) experiment that we dis-
cussed in Section 6.1 is an example of this type of flow (see Figure 6.1).

Because the mean strain rate is zero, the rapid pressure-strain term vanishes.
Then, assuming dissipation follows the Kolmogorov (1941) isotropy hypothesis
[Equation (6.42)], and using Rotta’s (1951) slow pressure-strain term [Equa-
tion (6.58)], the Reynolds-stress equation written in terms of ¢ is

dry; 2 € 2
d—;'? ] §65@’j o C]‘E (Tz’j + gkéij) (692)

If the scale-determining equation is for w rather than for ¢, we simply replace
Che/k by C13*w. The solutions according to the LRR and Stress-w models are

Tij + 3Pki; _ (koe)clf(cﬂ“l) _ (i)cxﬁ’/ﬁa 55
(Tij + %pkéij)o ke, We

where subscript o denotes initial value. Measurements of decaying anisotropic
turbulence have been used to determine the closure coefficient C;. The data
of Uberoi (1956), for example, indicate that C; lies between 1.4 and 1.8 [see
Equation (6.59)]. More recent experiments such as those of Le Penven et al.
(1984) further confirm that C; lies in this range.
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(@) III <0 (®) {II >0 (c) Phase-space portrait

Figure 6.11: Comparison of computed and measured decay of Reynolds stresses
Jfor homogeneous, anisotropic turbulence: — Wilcox (2006) Stress-omega
model; o, ®, o, o Le Penven et al. (u'?, v'2, w2, II).
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Figure 6.11 compares computed normal Reynolds stresses with the measure-
ments of Le Penven et al. for decaying homogeneous, anisotropic turbulence as
predicted by the Stress-w model. The figure presents results in terms of the
Reynolds-stress anisotropy second and third tensor invariants, I7 and ITI, de-
fined by [see Equations (6.45) and (6.70)]

Il = b?;jb;‘j and II] = ikbklbli where b'ij = T (694)
Parts (a) and (b) of the figure correspond to 777 assuming negative and positive
values, respectively. Part (c) displays 77 as a function of II] , which is gener-
ally referred to as the phase-space portrait for this type of flow. As shown,
differences between theory and experiment are small, indicating that C; = 1.8
is optimum for the Stress-w model.

Figure 6.12(a) compares computed and measured [Choi and Lumley (1984)]
normal components of the Reynolds-stress anisotropy tensor, b;;. This experi-
ment is similar to that of Tucker and Reynolds, with turbulence initially subjected
to plain strain and then returning to isotropy after the strain is removed. Fig-
ure 6.12(b) shows the phase-space portrait of the return-~to-isotropy problem,
plotted as 17/2 versus II11'/3. As shown, I7%/? is essentially a linear function
of IIT*/3 for this flow according to the LRR model. This computation has been
done with the original LRR coefficients, i.e., those corresponding to C; = 1.5.
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Figure 6.12: Comparison of computed and measured anisotropy tensor and
phase-space portrait for homogeneous, anisotropic turbulence: - - - LRR model;
— Sarkar-Speziale model; o, o Choi and Lumley. [From Speziale and So (1996)
— Published with the authors’ permission.]
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While discrepancies between computed and measured stresses are satisfactory,
even closer agreement between theory and experiment can be obtained with a
nonlinear model for the slow pressure-strain model. Sarkar and Speziale (1990),
for example, propose a simple quadratic model for the slow pressure-strain, i.e.,

Ai,j — -—C]_ﬁbw‘,j -+ 026 (bz‘kbkj e, %bmnbmnéij) (695)

where C; = 3.4 and C; = 4.2 [see Equation (6.71)]. Figures 6.12(a) and (b)
compare computed and measured anisotropy tensor components and phase-space
portraits. The nonlinear model clearly falls within the scatter of the experimental
data, while the LRR model prediction provides a less satisfactory description.
The phase-space portrait is especially revealing, with the nonlinear model faith-
fully reflecting the nonlinear variation of IT'/? with ITT/3,

Homogeneous turbulence experiments have also been performed that include
irrotational plane strain [Townsend (1956) and Tucker and Reynolds (1968)]
and uniform shear [Champagne, Harris and Corrsin (1970), Harris, Graham
and Corrsin (1977), Tavoularis and Corrsin (1981), and Tavoularis and Karnik
(1989)]. These flows can be used to establish closure coefficients such as C? in
the LRR pressure-strain model. The velocity gradient tensor for these flows is

0 S 0
OUi _ 10 —a 0 (6.96)
9z; 0 0 a

where a is the constant strain rate and S is the constant rate of mean shear.

While closed form solutions generally do not exist when mean strain rate
and/or shear are present, analytical progress can be made for the asymptotic
forms in the limit t — oo. In general, the specific dissipation rate, w ~ €/k,
approaches a constant limiting value while k and the Reynolds stresses grow
exponentially. Assuming solutions of this form yields closed-form expressions
for the Reynolds stresses.

Using such analysis for uniform shear (¢ = 0,5 # 0), Abid and Speziale
(1993) have analyzed the LRR and SSG pressure-strain models and two nonlinear
pressure-strain models developed by Shih and Lumley (1985) [SL model] and
by Fu, Launder and Tselepidakis (1987) [FLT model]. Table 6.3 summarizes
their results, along with results for the Stress-w model and asymptotic values
determined experimentally by Tavoularis and Karnik (1989). Inspection of the
table shows that the SSG model most faithfully reproduces measured asymptotic
values of the Reynolds stresses.

The parameter Sk/e is the ratio of the turbulence time scale, ¢/k, to the
mean-flow time scale as represented by the reciprocal of S. Inspection of the
table shows that the Stress-w model predicts a value for Sk/¢ that is within less
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than 2% of the measured value, closest of the models tested. While the LRR
model is also very close with the predicted and measured values differing by
3.4%, the SL, FLT and SSG models all differ by at least 10% and by as much
as 49%. This is important because all of the other models use the € equation,
which plays a role in determining the time scale of the various physical processes
represented in the Reynolds-stress equation. Errors associated with the ¢ equation
clearly have an adverse impact on the balance of these physical processes.

Table 6.3: Anisotropy-Tensor Limiting Values for Uniform Shear:

[ Property | Stressw | LRR | SL | FLT | _SSG_T Measured |
- 0.142 | 0152 0120 | 0.196 | 0218 0210
bay -0.156 | -0.186 | -0.121 | -0.151 | -0.164 | -0.160
byy -0.137 | -0.119 | -0.122 | -0.136 | -0.145 | -0.140
bzz -0.005 | -0.033 | 0.002 | -0.060 | -0073 | .0.070
Sk/e 4861 | 4830 | 7440 | 5950 | 5500 5.000

Note that the anisotropy tensor is proportional to the difference between the
Reynolds-stress tensor and %k Hence, percentage differences between computed
and measured values of b;; present an exaggerated estimate of the differences _
between computed and measured Reynolds stresses. For example, the SL model-
predicted value of b, is 43% smaller than the measured value. However, this
corresponds to a difference between computed and measured w2 of only 17%.

Figure 6.13 compares Stress-w model Reynolds stresses and corre,
measured values for the Tavoularis and Kamnik (1 989) uniform
with S = 29.0 sec™ !, 39.9 sec ! and 84.0 sec—!

sponding
-shear experiments
. The initial values used for w

u;u;(mglsecz) u;u;(mzlsec2) ujul (m?/sec?)
1.5 T T T 0.6 T T T T 3 1.8 T T ™
w2 &
; ] J—
10} 2y ® 4 o4t . { 12f -
;72" 2 5
° 9
05} i 02 23 o6} g
:E w2
00t s 1 00F ~— 1 00 it .
|? L L '} I3 L 1
s L L L -0.2 -0.6 1 L
0'50 2 4 8 10 0 2 4 6 8 10 S 10 15 20 25 30
St St St

(@) § = 29.0 sec™!

Figure 6.13: Computed and measured Reynolds stresses for hom
Wilcox (2006} Stress-w model; o, ®, o, b Tavoy

shear:

9% ol gl

{b) S = 39.9 sec™ 1

(€} & = 84.0 sec—!

ogeneous, plane
laris and Karnik (/2.




340 CHAPTER 6. BEYOND THE BOUSSINESQ APPROXIMATION

correspond to having Sk,/¢, = S/(8*w,) equal to 1.86, 3.10 and 3.81, respec-
tively. Consistent with the asymptotic results summarized in Table 6.3, computed
values of 70 and v'2 are very close to measurements, while computed 2 and
w'2 values are generally 10% below and above measurements, respectively.

Turning to flows with irrotational strain rate (a # 0,5 = 0), Figures 6.14(a)
and (b) compare Stress-w model and measured [Townsend (1956) and Tucker
and Reynolds (1968), respectively] Reynolds stresses. The strain rate for the
Townsend case is a = 9.44 sec™! (with ak,/e, = 0.57), while that of the
Tucker-Reynolds case is a = 4.45 sec™! (with ak, /e, = 0.49). Launder, Reece
and Rodi (1975) report very similar results for the Tucker-Reynolds case.
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0.000 . . 4 0.00 ¢ . 4 L 1
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at at
(a) Townsend (b) Tucker-Reynolds

Figure 6.14: Computed and measured Reynolds stresses for homogeneous, plane
strain: — Wilcox (2006) Stress-w model; o, e, o Experiment w2, v'?, w'?).

To illustrate how much of an improvement stress-transport models make for
flows with sudden changes in mean strain rate, Figure 6.15 compares measured
distortion parameter, K, for the Tucker-Reynolds experiment with computed
results obtained using the Stress-w model and the Wilcox-Rubesin (1980) k-w?
model. As shown, the Stress-w model predicts a gradual approach to isotropy
and the computed K more closely matches the experimental data.

6.5 Application to Free Shear Flows

While stress-transport models eliminate many of the shortcomings of the Boussi-
nesq eddy-viscosity approximation, they are not necessarily more accurate than
two-equation models for free shear flows. This is true because the scale deter-
mining equation (w, ¢, £, etc.) used by a stress-transport model plays a key role.
For example, the Wilcox (1988b) multiscale model uses the w equation of the
Wilcox (1988a) k-w model. Just as the spreading rates of this k-w model are
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Figure 6.15: Computed and measured distortion parameter for the Tucker-
Reynolds plane-strain flow: — Wilcox (2006) Stress-w model: - - - Wilcox-
Rubesin (1980) k-w? model: o o A Tucker-Reynolds.

significantly larger than measured (see Table 4.5), so are those predicted by the
multiscale model. Other shortcomings, such as the round-jet/plane-jet anomaly,
also carry through from two-equation models to stress-transport models.

Table 6.4 summarizes computed and measured spreading rates for the LRR
model and the Stress-w model. Comparison with Table 4.4 shows that the
Stress-w model predicts spreading rates similar to those of the Wilcox (2006)
k-w model. The average difference between computed and measured spreading
rates is 4%. Thus, the Stress-w model provides credible solutions for plane,
round and radial jets. The LRR model’s spreading rates are roughly 10% larger
than those of the Standard k-e¢ model [cf. Table 4.4]. As noted by Launder

Table 6.4: Free Shear Flow Spreading Rates Jor the Stress-w and LRR Models.

[ Flow | Stress-w Model | LRR Model | Measured ]
Far Wake 0.331 — 0.320-0.400
Mixing Layer 0.09% 0.104 0.103-0.120
Plane Jet 0.110 0.123 0.100-0.110
Round Jet 0.091 0.135 0.086-0.096
Radial Jet 0.097 — 0.096-0.110
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Figure 6.16: Comparison of computed and measured width for a curved mixing
layer: — LRR model; - - - Standard k-e¢ model; » Castro and Bradshaw. [From
Rodi (1981) — Copyright © AIAA 1981 — Used with permission.]

and Morse (1979), because the predicted round-jet spreading rate exceeds the
predicted plane-jet spreading rate, the LRR model fails to resolve the round-
jet/plane-jet anomaly.

Figure 6.16 compares computed and measured width of a curved mixing
layer. The computation was done using the LRR model [Rodi (1981)], and the
measurements correspond to an experiment of Castro and Bradshaw (1976) with
stabilizing curvature. The LRR model predicts a greater reduction in width than
the Standard k-¢ model. However, the LRR model’s predicted width lies as far
below the measured width as the k-e model’s prediction lies above. Although not
shown in the figure, Rodi’s (1976) Algebraic Stress Model predicts a width that
is about midway between, and thus in close agreement with measured values.

As a final comment, with all of the additional new closure coefficients attend-
ing nonlinear pressure-strain models, it is very likely that such models can be
fine tuned to correct the round-jet/plane-jet anomaly. However, we should keep
in mind that the anomaly underscores a deficiency in our physical description
and understanding of jets. Such fine tuning reveals nothing regarding the nature
of these flows, and thus amounts to little more than a curve-fitting exercise.

By contrast, the physically-plausible argument presented by Pope (1978) re-
garding the role of vortex stretching (Subsection 4.5.5) offers a more credible
solution. While the modification to the e equation fails to rectify the k-¢ model’s
deficiencies for jets, the modification to the coefficient 3 [Equation (6.87)] ap-
pearing in the Stress-w model, which uses the /inear LRR pressure-strain model,
implements Pope’s ideas quite effectively.
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6.6 Application to Wall-Bounded Flows

This section focuses upon wall-bounded flows, including channel and pipe flow,
and boundary layers with a variety of complicating effects. Before address-
ing such flows, however, we discuss surface boundary conditions. As with
two-equation models, we have the option of using wall functions or integrating
through the viscous sublayer.

6.6.1 Surface Boundary Conditions/Viscous Modifications

Wall-bounded flows require boundary conditions appropriate to a solid boundary
for the mean velocity and the scale-determining parameter, €.g., € or w. Ad-
ditionally, surface boundary conditions are needed for each component of the
Reynolds-stress tensor (implying a boundary condition for k). The exact surface
boundary conditions follow from the no-slip condition:

Tiy = 0 at Yy = 0 (697)

Stress-transport models, like two-equation models, may or may not predict a
satisfactory value of the constant C" in the law of the wall when the equations
are integrated through the viscous sublayer. If the model fails to predict a sat-
isfactory value for C, we have the choice of either introducing viscous damp-
ing factors or using wall functions to obviate integration through the sublayer.
The near-wall behavior of stress-transport models is strongly influenced by the
scale-determining equation. Models based on the ¢ equation fail to predict an
acceptable value of C' unless damping factors are applied. When damping fac-
tors are used, the equations become very stiff and are very difficult to integrate
through the sublayer [see Durbin (1991) and Laurence and Durbin (1994)]. By
contrast, models based on the w equation predict an acceptable value of ' and
are generally quite easy to integrate through the sublayer.

The most rational procedure for devising wall functions is to analyze the log
layer with perturbation methods. As with the k-e model, the velocity, £ and
either € or w are given by

B 1 Ur Y :
U=u, [Een( . ) +CJ (6.98)
U,2 k1/2 " k3/2
R et _ (gryara ks
TTE Ty O 69

Stmilar relations are needed for the Reynolds stresses, and the precise forms
depend upon the approximations used to close the Reynolds-stress equation. Re-
gardless of the model, the general form of the Reynolds-stress tensor is

Ty =Wijk  as oy —0 (6.100)
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where W;; is a constant tensor whose components depend upon the model’s
closure coefficients. The problems section examines log-layer structure for the
LRR and Stress-w models. The tensor W;; for these two models is

[ —0.908 0.304 0

Wi = 0.304 —0.435 0 (Stress-w model) (6.101)
0 0 ~0.658 |
[ —0.852  0.301 0
W = 0.301 —0.469 0 (LLRR model) (6.102)
0 0 —0.679 |

So, Lai, Zhang, and Hwang (1991) review low-Reynolds-number corrections
for stress-transport models based on the € equation. The damping functions gener-
ally introduced are similar to those proposed for the k-¢ model (see Section 4.9).
As with the k-e model, many authors have postulated low-Reynolds-number
damping functions, and the topic remains in a continuing state of development.

As with the k-w model, the surface value of specific dissipation rate, wy,, de-
termines the value of the constant C in the law of the wall for the Stress-w model.
Perturbation analysis of the sublayer shows that the limit w,, — oo corresponds
to a perfectly-smooth wall and, without low-Reynolds-number corrections, the
asymptotic behavior of w approaching the surface for both the k-w and Stress-w

models is
61,

_} -
)8092

Using Program SUBLAY (see Appendix C), the Stress-w model’s sublayer
behavior can be readily determined. Most importantly, the constant, C, in the
law of the wall is predicted to be

w as y—0 (Smooth Wall) (6.103)

C = 5.48 (6.104)

This is close enough to 5.0 to justify integrating the Stress-w model equations
through the sublayer without the aid of viscous damping functions. Figure 6.17
compares Stress-w model smooth-wall velocity profiles with corresponding mea-
surements of Laufer (1952), Andersen, Kays and Moffat (1972), and Wieghardt
[as tabulated by Coles and Hirst (1969)]. Figure 6.18 compares computed turbu-
lence production and dissipation terms with Laufer’s (1952) near-wall pipe-flow
measurements. Aside from the erroneous dissipation data for y* < 10, predic-
tions are within experimental error bounds.

As with the k-w model, the value of C is sensitive to the value of o. Its value
is also affected by the value chosen for C,. For consistency with the k-w model,
the value of o has been chosen to be 1/2. Then, selecting C = 10/19 = 0.526
gives the value quoted in Equation (6.104). To illustrate the sensitivity of C t0
', note that choosing Cy = 0.500 gives C = 5.05.
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Figure 6.17: Comparison of computed and measured sublayer velocity profiles:
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Since the Stress-w model has the property that the constant C varies with the
surface value of w, we can correlate w,, with surface roughness height, ks, and
surface mass-injection velocity, v,,. The resulting correlations are a little different
from those appropriate for the k-w model (see Subsections 4.7.2 and 4.7.3). The
surface boundary conditions based on these correlations are as follows.

For rough surfaces:

u2S,
w=-~-" at y=0 (Rough Wall) (6.105)

Vi

where the dimensionless coefficient S5 is defined in terms of the dimensionless
roughness height, £} = u,k, /vy, by

[ 2
(=)

Sr = 4 (6.106)
70 200\% 70| . .+
— =) ——= |, kr>5

k k:+[(k:) k;*}"' e

For surfaces with mass injection:

U.f.SB .
w=—— at y=0 (Mass Injection) (6.107)
w
where the dimensionless coefficient Sz is defined in terms of the dimensionless
injection velocity, vF = v, /t-, by

24

Sp = G —
7 ud (1 + 5ud)

(6.108)
As with the k-w model, for flows with suction (v,, < 0), either the smooth-
surface [Equation (6.103)] or slightly-rough-surface [Equation (4.203) with
kT < 5] boundary condition for w is appropriate.

While the Stress-w model does not require viscous damping functions to
achieve a satisfactory sublayer solution, introducing low-Reynolds-number cor-
rections can improve model predictions for a variety of flows. Most importantly,
with straightforward viscous damping functions very similar to those introduced
for the k-w model (see Subsection 4.9.2), the model’s ability to predict transition
can be greatly improved. As with the k-w model, we let

k k

ve=0— and Rer,= — (6.109)
W Wy

and the closure coefficients in Equations (6.83) — (6.85) are replaced by:
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» _ 05+ Rer /Ry g = 9 1008,/27 + (Rez/Rp)*
1+ Rer/Ry ’ 100 14+ (Rer/Rp)*
_ 13 ao+ Rer/R, 3+ Rer/R,
20 1+ Rer/R, 30+ Re;/R,
1+ doo(ReT/R‘@)4 A o (RBT/R5)4

> (6.110)

T TIT (Rer/Rp)E h=Po- 37 (Rer/Rp)4
o~ o+ (Rer/Rp)* _ 9 5/3+ (Rex/Rp)*
T e Y (Ren/Rp)T "5 1% (Rer/Rp)t )

Goo = (84 C2)/11, foo = (8C2 —2)/11, Hu = (60C, — 4)/55 (6.111)

1 . 3 1 10
B=7Pofs, o= 30 T T =g Cp= = (6.112)
. 1 O
@, gﬁo, Y =g Yo = 2000 (6.113)
22
Rg =8, Ry =6, i, = 9 (6.114)

With these viscous corrections, the Stress-w model reproduces all of the low-
Reynolds-number k- mode) transition-predictions discussed in Subsection 49.2,
and other subtle features such as asymptotic consistency. The modification to
the coefficient C; guarantees that the Reynolds shear stress goes to zero as Y3
for y — 0. The values chosen for Rg, Ry and R, vield C = 5.44.

Finally, the rough-surface boundary condition for the low-Reynolds-number
version of the Stress-w model replaces Equation (6.106) with

2
( (200) , ks

kT =
Sp = { (6.115)

2
50 200 50 | o .+
‘k‘;f*[(k:) _ere ok

For a surface with mass injection, Equation (6.108) is replaced by

11
SB = _:’:——_T (6116)
Ve (1 + Svy)
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6.6.2 Channel and Pipe Flow

Figure 6.19 compares computed and measured velocity and Reynolds-stress pro-
files for channel flow using the original Launder-Reece-Rodi model. The com-
putation was done using wall functions. Velocity profile data shown are those
of Laufer (1951) and Hanjali¢ (1970), while the Reynolds-stress data are those
of Comte-Bellot (1965). As shown, with the exception of u’2, computed and
measured profiles differ by less than 5%. The computed and measured u’? pro-
files differ by no more than 20%. Although not shown, even closer agreement
between computed and measured Reynolds stresses can be obtained with low-
Reynolds-number versions of the LRR model [see So et al. (1991)].

y/(H/2) y/(H/2)
1.0 ~ ™ 1.0 -
08 0.8 |-
0.6 |- 06 |-
0.4 0.4
.
0.2 0.2 -
0.0 i ‘ L o0 21
0.0 0.2 0.4 0.6 0.8 1.0 0.0 i 2.5
U/U1'n .‘l?/uﬂr
(a) Mean Velocity (b) Normal Reynolds stresses

Figure 6.19: Computed and measured flow properties for channel flow: (a)
—— LRR model, » Laufer, ¢ Hanjali¢; (b)) —, - - -, — — LRR model (V m/uf,

-'l?i Ur, a}’_2 Us), O, 8,0 Comte-Bellot ( m/uﬂ UTQ Uy, ' ’.‘.51-).
v v v V' [u,, V

One of the most controversial features of the LRR-model solution for channel
flow is the importance of the pressure-echo term throughout the flow. The
pressure-echo contribution on the centerline is approximately 15% of its peak
value. It is unclear that a supposed near-wall effect should have this large an
impact at the channel centerline. On the one hand, some researchers argue that
the echo effect scales with maximum eddy size which, for channel flow, would
be about half the channel height. What matters is the ratio of eddy size to y-
This is (nominally) constant through the log layer and doesn’t fall much in the
defect layer.
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Figure 6.20: Comparison of computed and measured channel-flow properties,
Repy = 13750, — High-Re Stress-w model; - - - Low-Re Stress-w model:
o Mansour et al. (DNS); o Halleen-Johnston correlation.

On the other hand, the Stress-w model — despite all its similarity to the
LRR model aside from its use of the w equation in place of the ¢ equation —
does not require a pressure-echo contribution to achieve a satisfactory channel-
flow solution. As noted earlier, this strongly suggests that the unreasonably-large
pressure-echo term used in the LRR and other e-equation-based stress-transport
models is needed to accommodate a deficiency of the modeled ¢ equation, most
likely its ill-conditioned near-wall behavior.

Figure 6.20 compares computed, measured and DNS channel-flow properties
for the Stress-w model with and without viscous corrections. Computed skin
friction is generally within 6% of the Halleen and Johnston (1967) correlation [see
Equation (3.139)]. Velocity, Reynolds shear stress, and turbulence kinetic energy
profiles differ from DNS data by less than 6%. Most notably, the low-Reynolds-
number model predicts the peak value of & near the wall to within 7% of the DNS
value for channel flow. Turbulence-energy production, P+ — vy (OU /8y) [ul,
is within 5% of the DNS results, and the dissipation rate, et = ve Ju, is within
10% of the DNS results except very close to the surface.
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Figure 6.21: Comparison of computed and measured pipe-flow properties,
Rep = 40000. — High Re Stress-w model; - - - Low Re Stress-w model;
o Laufer; o Prandtl correlation.

Figure 6.21 compares computed and measured properties for pipe flow. Com-
puted ¢s differs from Prandtl’s universal law of friction [see Equation (3.140)]
by less than 7% except at the lowest Reynolds numbers, where the formula is
known to be inaccurate. As with channel flow, velocity, Reynolds shear stress
and turbulence kinetic energy profiles differ from measurements by less than 6%.
The low-Reynolds-number Stress-w model predicts a peak value of k near the
wall within 5% of the measured value.

In both channel and pipe flow, the most noticeable difference between com-
puted and measured flow properties occurs for the dissipation when yt < 20.
The DNS channel-flow data show that dissipation achieves its maximum value
at the surface, a feature that is not captured by the low-Reynolds-number ver
sion of the Stress-w model. Several low-Reynolds-number versions of the LRR
model have been developed that closely mimic the near-wall behavior of the
dissipation. This is accomplished with viscous damping functions that are much
more complicated than the simple bilinear forms used for the Stress-w model
[see Equations (6.110)]. The excellent overall agreement between theory and
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experiment for all other features of the channel- and pipe-flow solutions casts
doubt on the importance of duplicating this subtle feature of the solution, with
the attendant complication (and the potential source of numerical mischief) that
would be involved in forcing the model to duplicate the measured surface value
of €.

Capturing other subtle details such as the sharp peak in k near the surface,
and achieving asymptotic consistency (e.g., k¥ ~ 32 and Tzy ~ y°) has been
done with virtually no change in skin friction and in mean-flow and turbulence-
property profiles above y* = 10. Similarly, low-Reynolds-number versions of
the LRR model have their most significant changes in turbulence-property profiles
confined to the portion of the channel below yt = 20.

Unlike the Stress-w model however, some low-Reynolds-number variants of
the LRR model provide accurate descriptions of near-wall dissipation while si-
multaneously giving nontrivial discrepancies between computed and measured
skin friction for typical wall-bounded flows. By contrast, the low-Reynolds-
number corrections have virtually no effect on the Stress-w modcl’s predicted
skin friction.

6.6.3 Rotating Channel Flow

Rotating channel flow is an interesting application of stress-transport models. As
with flow over a curved surface, two-equation models require ad hoc corrections
for rotating channel flow in order to make realistic predictions [e.g., Launder,
Priddin and Sharma (1977) and Wilcox and Chambers (1977)]. To understand
the problem, note that in a rotating coordinate frame, the Coriolis acceleration
yields additional inertial terms in the Reynolds-stress equation. Specifically, in a
coordinate system that is rotating with angular velocity, £, the Reynolds-stress
equation is

O7i 5 Ot ;
;—tj + Ug 8;;: + 2(€kmQ%Tim + €ikmQuTjm)
an 6Uz 8 r 87'3'3'
= Tk g T kg i — i + B ["E{; + Ciun| (6.117)

where €;m is the permutation tensor. Note that if the rotation tensor, (2,
appears in any of the closure approximations for €ij, 1;; or Cijk, it must be
replaced by ;; + €5, .

Contracting Equation (6.117) yields the turbulence kinetic energy equation.
Because the trace of the Coriolis term is zero, there is no explicit effect of rotation
appearing in the equation for k. Since rotation has a strong effect on turbulence,
this shows why ad hoc coordinate-frame-rotation modifications are needed for a
two-equation model.
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Figure 6.22 compares computed and measured velocity profiles for a channel
with a constant angular velocity about the spanwise (z) direction. Computations
have been done using the Gibson-Launder (1978) stress-transport model and the
Standard k-e model. Experimental data are those of Johnston et al. (1972), cor-
responding to an inverse Rossby number, QH /Uy, = 0.21, where H is channel
height and U,, is average velocity. The k-¢ model’s velocity profile is symmetric
about the center line. Consistent with measurements, the Gibson-Launder model
predicts an asymmetric profile. However, as clearly shown in the figure, the
velocity and shear stress on the “stable” side near y = 0 are underestimated.

w/H

Figure 6.22: Computed and measured velocity profiles for rotating channel flow
with QH /Uy, = 0.21: — Gibson-Launder model; - - - k-¢ model; o Johnston
et al. [From Speziale (1991) — Published with the author’s permission. i

6.6.4 Boundary Layers

Table 6.5 and Figure 6.23 compare computed and measured skin friction for
the 16 incompressible boundary layers considered in Chapters 3 and 4 (see Fig-
ures 3.17, 3.19, 4.4, 4.30 and 4.40). The figure includes numerical results for
the Stress-w model with and without low-Reynolds-number corrections. Both
versions of the Stress-w model provide acceptable predictions for all ranges of
pressure gradients, from favorable to strong adverse.

Table 6.5: Differences Between Computed and Measured Skin Friction.

[ Pressure Gradient | Flows [ Low Re Stress-w | High Re Stress-w_|
Favorable 1400, 1300, 2700, 6300 5% 5%
Mild Adverse 1100, 2100, 2500, 4800 5% 6%
Moderate Adverse | 2400, 2600, 3300, 4500 12% 10%
Strong Adverse 0141, 1200, 4400, 5300 12% 13%
All — 8% A
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Figure 6.23: Computed and measured skin Jriction for boundary layers subjected
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Although no results are included for e-based stress-transport models, older
versions are generally only a bit closer to measurements than the k-¢ model
(cf. Figure 44). By contrast, newer versions, especially those with nonlinear
pressure-strain terms, appear to more faithfully reproduce experimental data. For
example, Hanjali¢ et al. (1997) have developed an e-based stress-transport model
(with a linear pressure-strain term) that accurately predicts effects of adverse
pressure gradient. Using perturbation methods, Henkes (1998a) has shown that
this model is as close to measurements as the k-w model for equilibrium boundary
layers (ie., for constant B, — see Section 4.6), strongly suggesting that it will
perform well in general boundary-layer applications.

Although the Hanjali¢ et al. model has a large number of empirical functions
designed to permit the model to achieve asymptotic consistency and the ability
to predict transition and relaminarization, the improved accuracy for effects of
pressure gradient appears to result from a single modification to the € equation.
Specifically, Hanjali¢ et al. add a dissipation term of the form

1 8¢ O¢ 1 9¢ o¢f e2
290 08 _gfa. e s pls 118
Se oc max [(C} Oz ; Ox; )ng ozx; Ozx;’ 0] k (O

where C; = 2.5 is a closure coefficient and £ = k3/2 /e is the turbulence length
scale. This term limits the growth of £ in the log layer, and cancels the undesirable
effects of cross diffusion (relative to the k-w model) that plague the k-e model
[see the discussion at the end of Subsection 4.6.2}.

Surface curvature, like system rotation, has a significant effect on structural
features of the turbulent boundary layer. As discussed in Section 6.1, in the
absence of ad hoc modifications, such effects cannot be accurately predicted
with a two-equation model, as curvature has a trivial effect on the turbulence
kinetic energy equation. In principle, stress-transport models display none of
these shortcomings. Thus, computing curved-wall boundary layers poses an
interesting test of stress-transport models.

Figure 6.24 presents results of two computations done with the Stress-w
model for flow over a convex surface. The two cases are the constant-pressure
and adverse-pressure-gradient flows that So and Mellor (1 972) have investigated
experimentally. To insure accurate starting conditions, the measured momentum
and displacement thickness at z = 2 ft. have been matched to within 1% for both
cases, a point well upstream of the beginning of the curved-wall portion of the
flow at z = 4.375 ft. For both cases, computed and measured flow properties
differ by less than 8%.

The LRR model also offers important improvement in predictive accuracy
relative to the k-e model for flows with secondary motions. Lai et al. (1991),
for example, have successfully applied three variants of the LRR model with
wall functions to flow in a curved pipe. Consistent with measurements, their
computations predict existence of secondary flows.
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Figure 6.24: Computed and measured skin friction Jor flow over a convex wall:
—— High Re Stress-w model; - - - Low Re Stress-w model: o So and Mellor

Tuming to effects of compressibility, a stress-transport model’s performance
is intimately tied to the scale-determining equation. Models based on the ¢
equation will share the k-e model’s incorrect density scaling (see Section 5.6).
By contrast, models based on the w equation share the k-w model’s ability to
accurately predict the compressibie law of the wall.

Figure 6.25 confirms this point for the Stress-w model. The figure compares
computed effects of Mach number and surface cooling on flat-plate boundary
layer skin friction. The turbulent heat-flux vector has been computed accord-
ing to Equation (5.54) with constant turbulent Prandtl number. Figure 6.25(a)
compares computed ratio of skin friction to the incompressible value, ¢ f.»asa
function of Mach number with the Van Driest correlation. Figure 6.25(b) focuses
upon effects of surface temperature on flat-plate skin friction at Mach § . In all
computations, momentum-thickness Reynolds number, Reg, is 10* at the point
where ¢¢/cf, has been computed. Inspection of the figure shows that differences
between the predicted values and the correlated values nowhere exceed 3%.
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Figure 6.25: Computed and measured effects of freestream Mach number and
surface cooling on flat-plate boundary-layer skin friction. — Wilcox (2006)
Stress-w model; - - - Wilcox (2006) k-w model; o Van Driest correlation.

Stress-transport models hold promise of more accurate predictions for three-
dimensional flows. The primary reason two-equation models are inaccurate for
three-dimensional boundary layers, for example, lies in their use of an isotropic
eddy viscosity. However, the eddy viscosities in the streamwise and crossflow
directions of a typical three-dimensional boundary layer can differ significantly.
Figure 6.26 compares computed and measured skin friction for such a flow, a
boundary layer on a segmented cylinder, part of which rotates about its axis.
The experiment was performed by Higuchi and Rubesin (1978). As shown, the
Wilcox-Rubesin (1980) stress-transport model most accurately describes both
the axial (cy,) and transverse (cy,) skin friction components in the relaxation
zone, i.e., the region downstream of the spinning segment. The Cebeci-Smith
algebraic model and the Wilcox-Rubesin (1980) two-equation model yield skin
friction components that differ from measured values by as much as 20% and
10%, respectively.

The final round of applications is for incompressible, unsteady turbulent
boundary layers. These flows pose a difficult challenge to a turbulence model be-
cause many complicated frequency-dependent phenomena are generally present,
including periodic separation and reattachment.

Wilcox (1988b) has simulated the experiments performed by Jayaraman,
Parikh and Reynolds (1982) with a simplified stress-transport model (viz. the
multiscale model). In these experiments, a well developed steady turbulent
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Figure 6.26: Skin friction on a segmented spinning cylinder; — Cebeci-Smith
model; — — Wilcox-Rubesin k-w? model: - - - Wilcox-Rubesin Stress-transport
model; oo Higuchi and Rubesin. [From Rubesin (1989) — Copyright ©AIAA
— Used with permission.]

boundary layer enters a test section which has been designed to have freestream
velocity that varies according to:

Ue =Us {1 — az'[1 - cos(2n ft)]}, 2’ =(z— z0)/(z1 —x0) (6.119)

The quantity =’ is fractional distance through the test section where o and z; are
the values of streamwise distance, z, at the beginning and end of the test section,
respectively. Thus, an initially steady turbulent boundary layer is subjected to a
sinusoidally varying adverse pressure gradient. The experiments were performed
for low- and high-amplitude unsteadiness characterized by having a ~ 0.05 and
0.25, respectively. For both amplitudes, experiments were conducted for five
frequencies, f, ranging from 0.1 Hz to 2.0 Hz. Wilcox simuiates nine of the
experiments, including all of the low-amplitude cases and four of the five high-
amplitude cases. '

In order to compare computed and measured flow properties, we must de-
compose any flow property A(x, ¢) in terms of three components, viz.,

Ax, 1) = A(x) + A(x,t) + N (x, ¢) (6.120)
where :\(x) is the long-time averaged value of A(x,t), A(x,¢) is the organized
response component due to the imposed unsteadiness, and A’ (x, ¢) is the turbulent
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fluctuation. Using an unsteady boundary-layer program, Wilcox computes the
phase-averaged component, < A(x, t) >, defined by

< A(x,t) >= A(x) + A(x, 1) (6.121)

Jayaraman et al. expand < A(x,t) > in a Fourier series according to

< AMx,t) >= A(x) + Z Ap y(x) cos 2na ft + ¢n,y (X)) (6.122)

n=1

Velocity profile data, for example, are presented by Jayaraman et al. in terms of
%(x), A1 (x) and ¢, ., (x). These quantities can be extracted from the boundary-
layer solution by the normal Fourier decomposition, viz., by computing the fol-
lowing integrals.

1/f
mg=f/' < ik b) 55 il (6.123)
0
1/f
Ay u(x)COS P14 = f/ < u(x,t) > cos (2w ft) dt (6.124)
: 0
1/f
Aj (X)) singy,. = —f/ < u(x,t) > sin (27 ft) dt (6.125)
_ : 0

Figure 6.27 compares computed and measured velocity profiles at =’ = 0.88
for the five low-amplitude cases. As shown, computed mean velocity profiles
differ from corresponding measured profiles by no more than 5% of scale. Com-
parison of computed and measured A;, profiles shows that, consistent with
measurements, unsteady effects are confined to the near-wall Stokes layer at the
higher frequencies (f > 0.5 Hz). By contrast, at the two lowest frequencies, the
entire boundary layer is affected, with significant amplification of the organized
component occurring away from the surface. Differences between the numeri-
cal and experimental A; , profiles are less than 10%. Computed and measured
phase, ¢ ., profiles are very similar with differences nowhere in the flowfield
exceeding 5°.

Figure 6.28 compares computed and measured velocity profiles at =’ = 0.94
for the high-amplitude cases. As for the low amplitude cases, computed and
measured @(x) profiles lie within 5% of scale of each other. Similarly, computed
A, and ¢, . profiles differ from corresponding measurements by less than
10%. To provide a measure of how accurately temporal variations have been
predicted, Figure 6.29 compares computed and measured shape factor through
a complete cycle for all four frequencies. Differences between computed and
measured shape factors are less than 5%.
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Figure 6.27. Comparison of computed and measured mean velocity, A, ,, and
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model; ® Jayaraman et al. [From Wilcox (1 988b) — Copyright © AIAA4 1988
— Used with permission.]
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The four high-amplitude cases have also been computed using the Wilcox
(1988a) k-w model. Figure 6.29 shows that k-w and multiscale-model predictions
differ by only a few percent. Although it is possible the test cases are not as
difficult as might be expected, this seems unlikely in view of the wide Strouhal
number range and the fact that periodic separation and reattachment are present.
More likely, the k-w model fares well because all of the cases have attached
boundary layers through most of each cycle and in the mean.
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Figure 6.29: Comparison of computed and measured temporal variation of shape
factor for the high-amplitude cases: - - - Wilcox (1988a) k-w model; — Wilcox
(1988b) multiscale model; e Jayaraman et al. [From Wilcox (1988b) — Copy-
right © AIAA 1988 — Used with permission.]

As a closing comment, many recent turbulence modeling efforts focusing
on unsteady boundary layers mistakenly credit their success (or lack of it) to
achieving asymptotic consistency as y — 0 with the k-e¢ model or with a stress-
transport model based on the e equation. Recall from Subsection 4.9.1 that
asymptotic consistency is achieved when a turbulence model predicts

— 93, € — constant as y — 0

(6.126)

The computations described above were done with the high-Reynolds-number
versions of the Wilcox (1988a) k-w and Wilcox (1988b) multiscale models, nei-
ther of which is asymptotically consistent. All that appears to be necessary is
to achieve a satisfactory value for the constant C in the law of the wall. This
makes sense physically as the dissipation time scale is so short in the sublayer
that the sublayer responds to changes in the mean flow almost instantaneously
and thus behaves as a quasi-steady region. Consequently, achieving asymptoti-
cally consistent behavior in the sublayer is neither more nor less important for
unsteady flows than it is for steady flows.

2

W2 syt 2oyt w? oyt Y
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6.7 Application to Separated Flows

As we have seen in preceding chapters, the k-w model with a stress limiter yields
reasonably accurate separated-flow solutions from incompressible to hypersonic
flow regimes. Figures 5.16 underscore and 5.19 this point. By contrast, turbu-
lence models that use the ¢ equation are generally unreliable for separated flows,
especially shock-induced separation. Figure 5.10, for example, illustrates how
poorly such models perform for Mach 3 flow into a compression corner. In this
section, we will take a close look at how well stress-transport models perform
for several separated flows.

Because stress-transport models require more computer resources than alge-
braic and two-equation models, applications to separated flows have been rare
until recently. As we will see, results of recent applications tell a familiar story
regarding the scale-determining equation. In this section, we will focus on in-
compressible flow past backward-facing steps and compressible-flow applica-
tions including compression corners and shock-wave/boundary-layer interactions
for a ran.ge of Mach numbers.

As we proceed through this section, keep in mind that the Stress-w model dif-
fers from the k-w model only in the way the Reynolds-stress tensor is computed.
All common closure coefficients assume precisely the same values. And, like
the k-w model, no special compressibility modifications to the model have been
used. Similarly, the models involving the € equation have only slight differences
from the € equation used in standard k-¢ models.

6.7.1 Incompressible Backward-Facing Step

Focusing first on the incompressible backward-facing step, So et al. (1988) and
So and Yuan (1998) have done interesting studies using a variety of turbulence
models and closure approximations. The 1988 computations assess the effect of
various models for the pressure-strain correlation, while the 1998 study focuses
on low-Reynolds-number k-¢ and e-equation based stress-transport models,

The So et al. (1988) computations use Chien’s (1982) low-Reynolds number
version of the € equation. Most importantly, they have used three different models
for the pressure-strain correlation, viz., the models of Rotta (1951) [Model A1],
Launder, Reece and Rodi (1975) [Model A2], and Gibson and Younis (1986)
[Model A4]. Using the Rotta model, computations have been done with wall
functions as well {Model H-A1]. For reference, their computations also include
the Chien (1982) low-Reynolds-number k-¢ model [Model Lk-€]. These models
differ mainly in their representation of the fast pressure-strain term, with the
Rotta model ignoring it altogether. The computations simulate the experiments
of Eaton and Johnston (1980) in a duct with a large expansion ratio, for which
the measured reattachment length is 8 step heights.
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As shown in Figure 6.30, computed reattachment length for all of the com-
putations lies between 5 and 6 step heights, so that the result closest to measure-
ments differs from the measured value by 25%. All of the models show large
discrepancies between computed and measured wall pressure, while peak skin
friction values are as much as 3 times measured values downstream of reattach-
ment for the low-Reynolds-number models. In general, the stress-transport model
skin friction results are as far from measurements as those of the low-Reynolds-
number k-e model. Only when wall functions are used with the stress-transport
model does the computed skin friction lie reasonably close to measured values.
So et al. note that the smallest discrepancies between computed and measured
flow properties are obtained with the Rotta pressure-strain model, which omits
the rapid pressure-strain correlation. That is, the LRR and Gibson-Younis mod-
¢ls for the rapid pressure strain appear to yield larger discrepancies between
computed and measured values.
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Figure 6.30: Computed and measured skin friction for flow past a backward-
facing step. Al=Rotta model; A2=LRR model; A4=Gibson-Younis model;
H-Al=Rotta model with wall functions; Lk-e=Chien k-¢ model; e=Eaton and
Johnston. [From So et al. (1988) — Published with permission.|

Recalling how close to measurements k-w model predictions are for flow past
a backward-facing step (Section 4.10), the So et al. computations suggest that
their poor predictions are caused by the € equation. On the one hand, comparison
of Figures 4.46 and 6.30 shows that for stress-transport model H-Al, cy is very
similar to k-e¢ model results when wall functions are used. Although the flows are
a little different, the reattachment length is 25% smaller than measured for both
cases. On the other hand, using the same low-Reynolds-number e equation, cs for
stress-transport model A1 is very similar to the low-Reynolds-number k-¢ model’s
skin friction, except in the reverse-flow region. Despite the latter difference, the
reattachment length is the same in this case also. Thus, as with two-equation
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models, a stress-transport model’s performance for the backward-facing step is
intimately linked to the scale-determining equation. This strongly suggests that
much closer agreement between computed and measured flow properties would
be obtained with a stress-transport model based on the w equation, such as the
Stress-w model.

Figure 6.31 shows that the Stress-w model does indeed provide a far more
acceptable solution for the high-Reynolds-number backward-facing step of Driver
and Seegmiller (1985). For reference, the Wilcox (2006) k-w model solution is
also shown. Both numerical solutions have been done on the same 301 x 163
finite-difference mesh.

Computed and measured flow properties are generally within a few percent.
The Stress-w model predicts a reattachment length of 6.74 step heights, which
is 8% longer than the measured length of 6.26 step heights. By comparison, the
Wilcox (2006) k-w model predicts a reattachment length of 7.07 step heights
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Figure 6.31: Computed and measured skin friction and surface pressure for flow
past a backward-facing step; Re,, = 37500; — Wilcox (2006) Stress-w model;
- - - Wilcox (2006) k-w model: o Driver-Seegmiller:

In the more recent study, So and Yuan (1998) compute backstep flow with
seven low-Reynolds-number k-¢ models, the four-equation model of Durbin
(1991) and three stress-transport models. The flow considered is a relatively
low-Reynolds-number (5000 based on step height) case studied experimentally
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by Jovic and Driver (1994) and computed with DNS by Le, Moin and Kim
(1997). Overall, the computations are in closer agreement with measurements
for this flow than those of the high-Reynolds-number Eaton and Johnston (1980)
case discussed above. The So-Yuan computations show the following:

e The average difference between the predicted and measured reattachment
length for the seven k-¢ models is 9%. For Chien’s (1982) model, the
reattachment length is within 7% of the measured value. Note that this
model’s reattachment length is 25% shorter than measured for the high-
Reynolds-number Eaton and Johnson (1980) flow.

e Durbin’s four-equation model gives one of the best overall solutions, with
a reattachment length within 4% of the measured value. As shown by
Durbin (1995), this model also provides a credible solution for the high-
Reynolds-number backstep experiment of Driver and Seegmiller (1985).

e The three stress-transport models considered predict reattachment lengths
within 3%, 7% and 10% of the measured value.

It is difficult to draw any firm conclusions from the So-Yuan study as it con-
centrates on just one flow. Furthermore, the flow chosen is one that k-¢ models
predict reasonably well, and that doesn’t reveal their inherent weakness for this
type of application. Given their inaccurate predictions for backstep flows at
higher Reynolds numbers, the close agreement is probably a lucky coincidence.

Figure 6.32 shows that the Stress-w model yields a satisfactory solution for the
Jovic-Driver low-Reynolds-number backstep flow. As with the Driver-Seegmiller
case above, results obtained with the Wilcox (2006) k-w model are included for
reference. Based on reattachment length alone, these numerical results are not
quite as close to measurements as those for the Driver-Seegmiller case. The
Stress-w model predicts a reattachment length of 7.10 step heights, which is
18% longer than measured. However, the overall differences between theory and
experiment for most of the flowfield are generally less than 10%.

It is instructive to observe the close correlation between reattachment lerigth,
x.,., and the scale-determining equation.

e High-Re Backstep: ¢-based stress-transport and two-equation models
predict =, appreciably shorter than measured;

e High-Re Backstep: w-based stress-transport and two-equation models
predict x, slightly longer than measured;

e Low-Re Backstep: e-based stress-transport and two-equation models pre-
dict z,, within a few percent of the measured length;

e Low-Re Backstep: w-based stress-transport and two-equation models
predict z, somewhat longer than measured.
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Figure 6.32: Computed and measured skin friction and surface pressure for flow
past a backward-facing step; Re, = 5000; —- Wilcox {2006) Stress-w model;
- - - Wilcox (2006) k-w model; o Jovic-Driver

One final observation regarding the performance of the Stress-w model on
incompressible backward-facing steps is of interest. For both of the cases dis-
cussed above, the reattachment length predicted by the Stress-w model is closer
to the measured length than that of the k-w model. For the high- Re case, using
the Stress-w model reduces the difference from 13% for the Wilcox (2006) k-w
model to just 8%. For the low-Re case, the Stress-w model’s z, is 18% longer
than measured compared to 21% longer for the k-w model.

6.7.2 Transonic Flow Over an Axisymmetric Bump

Subsection 5.8.5 includes computational results for the Bachalo-Johnson (1979)
transonic-bump flow with three k-w models and with the Spalart-Allmaras (1992)
one-equation model. Although the Wilcox (2006) k-w model and the Spalart-
Allmaras model predict surface-pressure coefficient, C,, values within 7% of
measurements, the predicted shock location lies downstream of the shock in the
experimental flowfield. Whilc using a stress limiter with C};,, = 1 removes
the k-w model’s discrepancy in shock location and brings C, much closer to
measured values, the same stress-limiter strength is much too strong for Mach
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numbers of 3 and higher. An interesting question to pose is whether or not
the Stress-w model also misses the precise location of the shock for this flow.
Figure 6.33 provides the answer to this question. Results shown are for an
EDDY2C (see Appendix C) computation using the same 201 x 101 point mesh
as for the k-w model. As shown, the Stress-w model’s shock location and C,
distributions lie within 3% of corresponding measurements.

Cp 04 1 T T T T
0.2

0.0

Figure 6.33: Comparison of computed and measured surface-pressure coefficient
for transonic flow past an axisymmetric bump: —— Wilcox (2006) Stress-w
model; - - - Wilcox (2006) k-w model; o Bachalo and Johnson.

6.7.3 Mach 3 Compression Corners and Reflecting Shocks

We now consider the three shock-separated turbulent boundary-layer computa-
tions discussed in Subsection 5.8.7. The flows include two planar compression-
corner flows and a reflecting-shock case. Figure 6.34 compares computed and
measured surface pressure and skin friction using the high-Reynolds-number
Stress-w model. For reference, computed results for the Wilcox (2006) k-w
are included. In all cases, EDDY2C has been used with the same 401 x 201
finite-difference grids implemented for the k-w model computations.

For all three cases, the Stress-w model solution is quite close to the k-w
model solution, especially the surface pressure. The most noteworthy difference
between the Stress-w and k-w solutions is in the skin friction downstream of
reattachment. The values for the Stress-w model are typically 15% higher than
those for the k-w model. This would correspond to a more rapid return t0
equilibrium, which more closely matches measurements.
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Gerolymos, Sauret and Vallet (2004) have computed these three flows using
two e-based stress-transport models. The first is the Gerolymos-Vallet (2001)
stress-transport model and the second is a “wall-normal-free” version of the
Launder-Shima (1989) stress-transport model. The terminology wall-normal-free
(WNF) means free of any closure approximations that involve physical distance
from a solid boundary. The primary differences between these two models is
in the treatment of the pressure-strain correlation tensor, 11;;, and the turbulent-
transport tensor, Cijx [see Equations (6.39) and (6.41)].

Figure 6.35 compares computed and measured surface pressure and skin
friction for the Reda-Murphy shock-wave/boundary-layer interaction and Settles’
24° compression corner flow. As shown, the beginning of the pressure rise for
the Gerolymos et al. (GV RSM) stress-transport model occurs a bit upstream
of the measured rise for both cases. Computed skin friction downstream of
reattachment is significantly larger than measured. The steep slope of the c;y
curve indicates a much more rapid return to equilibrium than is present in the
experimental flowfields.

For the Launder et al. (WNF-LSS RSM) stress-transport model, the beginning
of the pressure rise occurs well downstream of the measured location, which
would be consistent with a separation bubble about 2/3 the size of the bubble in
the experiment. Although skin friction is not as large as with the Gerolymos et al.
model, it still lies well above measured values. The steeper than measured slope
of the ¢; curve again indicates an approach to equilibrium that is significantly
faster than that of the cxperimental flowfield.

As noted above, the main difference between these two stress-transport mod-
els based on the € equation is in their treatment of the tensors Il;; and Cij«.
The treatment of these two terms is far more complicated than that used for the
Stress-w model. By design, the Stress-w model uses the linear Launder, Reece
and Rodi (1975) closure model for IT;; and an especially simple closure approxi-
mation for C;;;, based on standard gradient diffusion. The objective in developing
the model has been to demonstrate how well an w-based stress-transport model
with an absolute minimum amount of complexity performs for complex turbulent
flows. The Stress-w model has just 8 closure coefficients, viz., C1, Ca2, @, Bes
A%, o, ¢* and 04,, along with two very simple closure functions, fg and o4 /O do
[see Equations (6.84) — (6.87)]. Note that all except C; and C, appear in the
Wilcox (2006) k-w model.

In distinct contrast, the Launder-Shima-Sharma model uses a cubic model
for TI;; and more than double the number of closure coefficients and closure
functions used for the Stress-w model. Although it is less complex, the Gerolymos
model uses 4 closure coefficients and 4 closure functions just to model Cijk-

Comparing the results shown in Figures 6.34 and 6.35 suggests an interesting
question. How much of the complexity involved in these models is required to
offset the deficiencies of the e equation?
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Figure 6.35: Comparison of computed and measured surface pressure and skin
Sriction for Mach 3 shock-separated flows. [From Gerolymos et al. (2004) —
Copyright (© AIAA 2004 — Used with permission. i
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6.7.4 Hypersonic Shock-Separated Flows

Our final applications are for hypersonic flows. Figure 6.36 compares computed
and measured surface pressure for the Mach 11 shock-wave/boundary-layer in-
teraction experimentally documented by Holden (1978). The surface is highly
cooled with a wall to adiabatic-wall temperature ratio of 77, /75, = 0.2, The
EDDY2C computation employed the same 501 x 301 point finite-difference mesh
that was used for the k- model computations of Subsection 5.8.8. Computed
separation-bubble length for the Stress-w model is 1.025,, where §, is the inci-
dent boundary-layer thickness just upstream of the interaction. By comparison,
the separation-bubble length is 1.536, for the k-w model, so that the Stress-w
model solution shows larger differences between computed and measured surface
pressure,
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Figure 6.36: Comparison of computed and measured surface pressure for a
Mach 11 shock-wave/boundary-layer interaction: — Wilcox (2006) Stress-w
model: - - - Wilcox (2006) k-w model; o Holden (1978)

We conclude with the Mach 7, 35 © cylinder-flare configuration experimen-
tally investigated by Kussoy and Horstman (1989). Like the Mach 11 flow above,
this flow has a highly-cooled surface with T, /T4, = 0.4. Recall that analy-
sis of this flow demonstrates the reattachment-point heat-transfer anomaly (see
Subsection 5.8.9) that plagues two-equation turbulence models.
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Figure 6.37 shows that, like the Wilcox (2006) k-w model, the Stress-w model
gives a peak surface heat transfer rate, g,,, that is 50% higher than the measured
rate. This is unsurprising for two reasons. First, both models use the Reynolds
analogy in computing heat transfer. Second, the models differ in the way they
compute the Reynolds stresses, which are determined from the larger energy-
containing eddies. Since heat transfer occurs primarily in the smallest eddies,
changes in the way the Reynolds stresses are computed should not be expected
to make an appreciable difference. This is yet another example of how a stress-
transport model reflects the strengths and weaknesses of the scale-determining
equation.

Pw /Poc G /q";oo
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Figure 6.37: Computed and measured surface pressure and heat transfer for
Mach 7 flow into a 35° axisymmetric compression corner (cylinder-flare ge-
ometry): —— Wilcox (2006) Stress-w model: - - - Wilcox (2006) k-w model;
o Kussoy-Horstman (1989)

6.8 Range of Applicability

The two primary approaches to removing the limitations of the Boussinesq ap-
proximation are to use either a nonlinear constitutive relation or a stress-
transport model. As discussed in Section 6.2, nonlincar constitutive relations
offer some advantage over the Boussinesq approximation, most notably for flows
in which anisotropy of the normal Reynolds stresses is important. Algebraic
Stress Models provide a straightforward method for accurately predicting ef-
fects of streamline curvature and system rotation, although ad hoc corrections to
standard two-equation models are just as effective. However, nonlinear constitu-
tive relations offer no improvement over the Boussinesq approximation for flows
with sudden changes in mean strain rate.
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Despite their complexity, stress-transport models have great potential for re-
moving shortcomings of the Boussinesq approximation in a natural way. Without
ad hoc corrections, stress-transport models provide physically realistic predictions
for flows with curved streamlines, system rotation, sudden changes in mean strain
rate and secondary motions of the second kind. However, to be completely ob-
jective in our assessment, we must also note that in many such applications only
qualitative agreement between theory and experiment has been obtained.

Just as older k-equation oriented, one-equation turbulence models share the
shortcomings and successes of the mixing-length model, stress-transport models
reflect the strengths and weaknesses of the scale-determining equation used with
the model, There is an increasing pool of evidence that many of the shortcomings
of stress-transport models are caused by the scale-determining equation. Results
obtained for the backward-facing step and shock-separated flows (Section 6.7),
for example, strongly suggest that predictions of standard stress-transport models
can be improved by using the w equation in place of the € equation. This is not
to say all of the ills of stress-transport models are caused by their use of the ¢
equation. Based on DNS results for backstep flows, Parneix et al. (1998) show
that even when the dissipation rate is accurately predicted, current models are
capable of predicting large discrepancies from measurements. We can reasonably
infer that this points to deficiencies in modeling of the pressure-strain correlation
tensor, II;;.

From a numerical point of view, stress-transport models are at least as dif-
ficult to solve as the corresponding two-equation model. Models based on the
€ equation fail to predict a satisfactory law of the wall and require complicated
viscous damping functions. Correspondingly, such models are generally very
difficult to integrate. By contrast, models based on the w equation require no
special viscous corrections, and are much easier to integrate. In particular, the
Stress-w model usually requires only about 25% to 40% more computing time
relative to the k-w model.” Hence, the scale-determining equation may be even
more important for stress-transport models than for two-equation models.

7Reflection of an oblique from a flat surface is an exception for the model. Much smaller
timesteps are needed with Program EDDY2C to counter realizability violations mainly across the
reflected shock. For such flows, required computing time can be 2-3 times longer than the time
needed for the k-w model.
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Problems

6.1 The objective of this problem is to derive the modified law of the wall for flow over
a curved wall according to the k~w model.

(a) Verify that the dimensionless form of Equations (6.5) to (6.7) in the log layer is
[with € = »/(u,R) and assuming 04 = 0 and 3 = Bo]:

L,‘r‘l— +
vr (L—ezf+) T il
y

dy+ wT
d dkt 9 dut
* 4+ -+ . L] +42 +\2rr+
d dw™ ke
au;':-———d = r ;f———d +} = Boktwt -—a%

(b) Assume a solution of the form

du+ 1 + pyrart 253
i ~ s [l +eay  Iny” + O(e”) ]
1
kY o~ 1+ ebyttny™ 4+ O(e?
/G [+ eby*tny ()]
o 1 4 5
W ~ W [] -+ ECy+€’i‘1y -+ O(f ):[

with € < 1. Substitute into the equations for k™ and w* and verify that the
coefficients b and ¢ are given by

9/2

a T
PR Y /-

NOTE: Use the fact that for the k-w model 0k? = (Bo/3* - a)/B¥, and ignore
terms proportional to y™ relative to terms proportional to yHinyt.

(c) Substitute into the momentum equation and verify that

a+b—-c=1

(d) Using o = 13/25, 3, = 0.0708, 8* = 9/100, ¢ = 1/2 and ¢* = 3/5, determine
the numerical values of a, b and ¢, and show that the modified law of the wall is

of the form -
[1 &ﬁg}i} L 7N (M) L
R ur K v

where r ~ 8.9.
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6.2 For incompressible flow, we wish to use Speziale’s nonlinear constitutive relation
with the k-w model. In terms of k-w model parameters, the relation can be written as

1
Tij = kél, +20rSij + Cogrs (Stkskj = Esmsmai,-)
k o 1 ¢
+Ce 55— Bt (Sz'j -3 S'mm 5:::5)

where ('p and Cx are closure coefficients whose values are to be determined.

(a) Verify for incompressible boundary layers that

So:y = Sy: = %——‘%g, all other S,:j ~ 0
2
o ouU o

(b) Express the Reynolds-stress components Tzy, Tzz, Tyy and 7., in terms of k, vr,
8*, w and U /Oy for incompressible boundary layers.

{c) Using the stresses derived in part (b), write the log-layer form of the mean-
momentum, k£ and w equations. Assume that 64 = 0 and 3 = (.

(d) Assuming a solution of the form 8U /8y = u-/(ky) and k = constant, verify that

(e) Verify that e
w?/k = (8 —Cp +8Cg)/12

v2/k = (8~ Cp —4Cg)/12
w?2/k = (8 +2Cp — 4CE)/12

(f) Determine the values of Cp and Cy that are consistent with the normal Reynolds
stresses standing in the ratio

6.3 Verify that in the log layer of an incompressible flat-plate boundary layer, the Wilcox-
Rubesin nonlinear constitutive relation [Equation (6.15)] predicts that the normal Reynolds
stresses stand in the ratio

w2 v w?=4:2:3

HINT: Recall that in the log layer, 0U /3y = /3* w.

6.4 Check the accuracy of Speziale’s regularization approximation as quoted in Equa-

tion (6.28). To do so, let n vary from O to 1 and compare the right- and left-hand sides

of the equation for £ = %, 5 and 1.
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6.5 For incompressible flow in a rectangular duct, the strain rate and rotation tensors are
approximately

0 1au 18U 0 lou 18U
2 oy 2 8z 2 By 2 8z
1
Sij=| 3% 0 0 and Q5= -43L 9 0
1 ou 18U
3 5z 0 0 28z 0 0

Determine 7oy, 7s., Ty, and (.2 — Tyy) according to the Wilcox-Rubesin nonlinear
constitutive relation [Equation (6.15)).

6.6 Derive the Poisson equation [Equation (6.51)] for the fluctuating pressure.

6.7 Consider the Launder-Reece-Rodi (LRR) rapid-pressure-strain closure approximation,
Equation (6.63).
(a) Verify that a;j;i; satisfies the symmetry constraints in Equation (6.61).

(b) Invoke the constraints of Equation (6.62) and verify that o, 3,  and v are given
by Equation (6.64).

(¢) Form the tensor product

ol Uy
M, = (@ijur + ajin) 2k
I Dy (aiser + ajona) Oz,

and verify Equations (6.65) through (6.67).

6.8 Consider Lumley’s general representation for IT;; in Equation (6.69). Show that the
LRR pressure-strain model [including A;; as defined in Equation (6.58)] is the limiting
case where all coefficients other than ag, a2, a7 and ag equal to zero. Also, assuming
1 = 1.8, determine the values of @0, a2, a7 and ag that correspond to C, = 0.4, 0.5 and
0.6. Assume the flow is incompressible.

6.9 Suppose we have flow in a coordinate frame rotating with angular velocity ©2 = Qk,
where K is a unit vector in the z direction. The incompressible Navier-Stokes equation is

gli+2‘,oﬂ><u:—V’p—pﬂxﬂ><:{+;,4«,V’2u
Pt

where x is position vector and d/dt is the Eulerian derivative. Verify that the Reynolds-
stress equation’s inertial terms in a two-dimensional flow are as follows:

d { Tax Tg-_,y 0 } [ -_4QT.Cy QQ(T_’E:I; e Tyy) U J
+

It Twy Tyy 0 zg(Tww T Tyy) 497;1;1; 4]
Gl O 0 e 0 0 0
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6.10 Consider the Launder, Reece and Rodi stress-transport model, Equations (6.73)
through (6.77). This problem analyzes the model’s predicted asymptotic solution for
homogeneous plane shear, in which

aU;

B.’JZ_;-‘

0 S 0
0 0 0
0 0 0

(a) Assuming that e/k — constant as ¢ — oo, verify that

P 052_1

€ Cei—1

where P = S7zy.
(b) Neglecting the pressure-echo effect, verify that

257—55?! STyy ST‘L’Z 0 STa:z 0
Pz'j - STyy 0 0 Fy D,;,j = ST,,Q.‘. ZSsz S'sz
S‘Tyz 0 0 0 S’sz 0

(c) Assuming a solution of the form 7y; = Cy;e* where Cy; is independent of time
and A is a constant, verify that if 75- and 7, are initially zero, they are always
zero, provided 3(1 — &) > 0.

(d) Determine ¢/k and P/k as functions of C.;, Ces and X under the assumption that
Tij = Cﬁje’\t.

(e) Using results of Parts (a) — (d), determine w2 /k, v'2/k and w'2/k as algebraic
functions of the closure coefficients. HINT: You can simplify your computations
somewhat by first writing the equation for 7;; as an equation for :; + £kdi;.

(f) Using the following two scts of closure coefficient values, compute the numerical
values of u’?/k, v'2/k and w'?/k.

1. Original LRR: Cy = 1.5, C2 =04, Cey = 144, Cea = 1.90
2. Revised LRR:; C1 =18, Ca=0.6,C =144, Ce2 = 1.92

6.11 Consider the Stress-w model, Equations (6.78) through (6.87). In the following
computations, you can assume ¢ = 0 and 8 = G,.

Il

(a) State the limiting form of the equations for the incompressible, two-dimensional
log layer.

(b) Assuming a solution of the form

al  us . w? Ur
s e s G e W o ——
dy Ky vB* VB Ky

determine x, —w v /k, u'?/k, v’2/k and w’2/k as algebraic functions of the
closure coefficients. HINT: All are constant.

(c) Using the closure coefficient values in Equations (6.83) through (6.87), verify that
k=~ 0.40, —u'v' /k = 0.30 and ©'? : v'? w2 &~ 4.0:1.9:2.9.
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6.12 Consider the Launder, Reece and Rodj stress-transport model, Equations (6.73)
through (6.77).

{(a) State the limiting form of the equations for the incompressible, two-dimensional

log layer.
(b) Assuming a solution of the form
dU Ur ~ u 2 ud

dy kY’ CE Ky

determine «, —u'v’/k, u?/k, v2 [k and w?/k as algebraic functions of the
closure coefficients. HINTS: All are constant. Also, the ¢ equation yields x as a
function of the closure coefficients and v"2/k. You needn’t simplify further.

(¢) Using the closure coefficient values in Equation (6.77), verify that x =~ 0.39,
~uwv'/k 7~ 0.30, and u : v2 : w2 ~ 4: 2.9 : 3.2. HINT: Combining the
simplified € and ., equations yields a cubic equation for . It can be solved in
closed form by assuming x = 0.4(1 + d), linearizing and solving for §.

6.13 Consider the Stress-w model, Equations (6.78) through (6.87). In the following
computations, you can assume oy = 0 and b=:35.

(a) State the limiting form of the equations for the incompressible, two-dimensional

log layer.
(b) Assuming a solution of the form
aty oy, u? Ur
el et k ~ f W o~ ——
dy Ky VB* VB ry

determine  and verify that the Reynolds stress components according to the Stress-
w model are:

Tax 1 2 4 2 .
e = c‘l[e,“ 1) (2 3‘“"5)]
Tvy }_{E _ _(EA_é‘)J

% & 3G —(30-3

Tyz 1 12 vy gA 2“

% 7 C [5(1 1) (:%Q“Ldﬁ)]

. Tzy 1 o Tyy A Toe 1 - k
—_ 0~ —{(la-1)-== 43 + =
k Ch l:( ) Tay Ty FYTrcy :‘

(c) Substituting for &, 3 and % in terms of C; and Cs from Equation (6.83), show
that the normal stresses are

k 33C,
Tyy B 22C,) - 30C, 4+ 2

k 33C,

_22C1 +18C; — 10
33C)

o
L2l

>
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(d) Substituting the results of Part (c) into the last of the equations developed in
Part (b), show that the shear stress satisfies the following equation.

2
Toy . 2 _ . 2
(22) = iiiem igry (55 + 24201 = 330C: — 165C%) 6.127)

(e) Verify that if we insist upon Ty, /k being equal to Bradshaw’s constant so that
VB* = - = 0.3, necessarily C; and C are related by a simple quadratic. Make
a table of values of C> as a function for C) for the range of physically-realistic
values based on measurements [cf. Equation (6.59)].

6.14 Consider the low-Reynolds-number version of the Stress-w model, Equations (6.78)
through (6.80), (6.82) and (6.109) through (6.114). Modify Program SUBLAY (see Ap-
pendix C) as needed to permit specifying the values of C2 and R. (see Subroutine
START).

(a) With R, = 22/9, compute the value of the constant in the law of the wall, C, for
C2 = 0.40,0.45,0.50 and 0.55.

(b) Leaving all other values unchanged, determine the value of R., that gives C' = 5.50
for C; = 0.40,0.45, 0.50 and 0.55.

6.15 Using Program MIXER (see¢ Appendix C), compute 8’ /5, at Mach 0,05, 1,2, 3,4
and 5 for the Stress-w model. Do your computations using 101 grid points, and exercise
the program for the Sarkar, Zeman and Wilcox compressibility corrections defined in
Equations (5.81) through (5.83). Plot your results for 8’ /8;, and compare to the following
experimental data compiled by Barone et al. (2006).

(#5785 [ M [ o7 | M. [ 375 | Mo 575
0.059 1.000 0.535 0.810 0.691 0.565 0.945 0.489
0.206 0.985 0.580 { 0927 0.720 0.633 0.985 0.400
0.411 0.973 0.589 0.812 0.795 0.502 0.992 0.464
0.455 0.817 0.640 0.762 0.825 0.535 1.040 0.518
0.455 0.965 0.640 0.841 0.838 0.570 1.122 0474
0.510 | 0.971 0.668 0.733 0.860 0.575 1.312 0.436
0519 { 0.957 0.677 | 0.698 0.862 | 0.457 1.449 0.442

6.16 The object of this problem is to compare predictions of the Stress-w model with
measured properties of a turbulent boundary layer with surface mass injection. The
experiment to be simulated was conducted by Andersen et al. (1972). Use Program
EDDYBL, its menu-driven setup utility, Program EDDYBL_DATA and the input data
provided on the companion CD (see Appendix C). Do computations using the high-Re
and low-Re versions of the Stress-w model. Compare computed skin friction with the
following measured values.

[(s® | ¢ [ s@® [ e [ s® [ ¢ |
0.8462 | 1.92-.107% || 3.8376 [ 1.16-103 || 6.8224 | 9.00-10~*
1.8368 | 1.55-1073 || 4.8216 | 1.04-10~3 || 7.5112 | 8.50-1074
2.8208 | 1.31-1072 || 5.8384 | 9.70.10 ¢
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6.17 The object of this problem is to compare predictions of the Stress-w model with
measured properties of a turbulent boundary layer with adverse pressure gradient. The ex-
periment to be simulated was conducted by Bradshaw [see Coles and Hirst (1969) — Flow
3300]. Use Program EDDYBL, its menu-driven setup utility, Program EDDYBL_DATA
and the input data provided on the companion CD (see Appendix C). Do computations
using the high-Re and low-Re versions of the Stress-w model. Compare computed skin
friction with the following measured values.

Ls®] o Ts@®] <
25 | 2451073 50 | 1.74.10°3
3.0 | 2.17.10-3 60 | 1.61.1073
35 | 2.00.1073 7.0 | 1.56.1073
40 | 191-10-3

6.18 The object of this problem is to compare predictions of the Stress-w: model with mea-
sured properties of a Mach 2.65 turbulent boundary layer with adverse pressure gradient
and surface heat transfer. The experiment to be simulated was conducted by Fernando
and Smits [see Fernholz and Finley (1981)]. Use Program EDDYBL, its menu-driven
setup utility, Program EDDYBL _DATA and the input data provided on the companion
CD (see Appendix C). Do computations using the high-Re and low-Re versions of the
Stress-w model. Compare computed skin friction with the following measured values.

sT o Ts@m] & ]
9.92.107* [ 1273 [ 9.41-10-2
9.96-107* || 1299 | 1.01-10~2
9.67-107* || 1.324 | 1.07-10~2
9.43-107* || 1349 | 1.0810~3
9.46-10 % || 1.361 | 1.04-10~3

6.19 Compute the Bachalo-Johnson transonic bump flow using the Stress-w model with
viscous modifications. Use Program EDDY2C, its menu-driven setup utility, Program
EDDY2C_DATA, and the input data provided on the companion CD (see Appendix C).

(@) You must first run Program EDDYBL to establish flow properties at the upstream
boundary. To avoid having to adjust the transition point, select the Stress-w model
“w/o viscous mods.” Verify that the Reynolds number based on momentum thick-
ness is 2390.

(b) Run EDDY2C for the Stress-w model “with viscous mods” and make graphs of
the “residual” and the separation-point location, , /¢, as functions of timestep
number.

(¢) Compare the value of s /c predicted by the low-Re Stress-w model relative to the
value predicted without viscous modifications, viz., £,/c = (.66,

NOTE: This computation will take about a half hour of CPU time on a 3-GHz Pentium-D
microcomputer.
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6.20 Compute Settles’ Mach 2.84 flow into a 24° compression corner using the Stress-w
model with viscous modifications. Use Program EDDY2C, its menu-driven setup util-
ity, Program EDDY2C_DATA, and the input data provided on the companion CD (see
Appendix C).

(a) You must first run Program EDDYBL to establish flow properties at the upstream
boundary. After selecting the Stress-w model “with viscous mods,” modify the
supplied input-data file eddybi.dat, using trial and error to adjust the “Maximum
Arclength” 4(SSTOP) so that the Reynolds number based on momentum thickness
is 9.38 - 10%.

(b) Run EDDY2C for the Stress-w model “with viscous mods™ and make graphs of
the “residual” and the length of the separation bubble, (z» — xs)/J., as functions
of timestep number.

(c) Compare the value of (2, —xs)/, predicted by the low-Re Stress-w model relative
to the value predicted without viscous modifications, viz., (@r — xg)/00 = 2.13.

NOTE: This computation will take a little less than an hour of CPU time on a 3-GHz
Pentium-D microcomputer.



Chapter 7

Numerical Considerations

Modern turbulence model equations pose special numerical difficulties that must
be understood in order to obtain reliable numerical solutions, even for boundary-
layer flows where the equations are parabolic. For one-equation, two-equation
and stress-transport models, these difficulties can include stiffness caused by the
presence of an additional time scale, singular behavior near solid boundaries,
non-analytical behavior at sharp turbulent/nonturbulent interfaces and sensitivity
to freestream boundary conditions. This chapter focuses on these difficulties and
on the solution methods for turbulence-mode] equations that have evolved.

7.1 Multiple Time Scales and Stiffness

One key issue that must be addressed in developing a numerical algorithm for
fluid-flow problems is that of the physically relevant time scales. Taking proper
account of these time scales is a necessary condition for numerical accuracy. For
example, when we deal with non-chemically-reacting laminar flow, there are two
distinct time scales corresponding to different physical processes. If L and &/
denote characteristic length and velocity for the flowfield, ¢ is sound speed and
v 1s kinematic viscosity, the time scales are:

* Wave propagation, tyave ~ L/|U + al
¢ Molecular diffusion, tg;rf ~ L2 /v

When we use turbulence-transport equations, we have yet another time scale
corresponding to the rate of decay of turbulence properties. In terms of the
specific dissipation rate, w ~ €/k, this time scale is:

e Dissipation, {5, ~ 1/w ~ k/e

381
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Any numerical algorithm designed for use with turbulence-transport equations
should take account of all three of these time scales.

In terms of the Reynolds number, Re;, = UL/v, and the Mach number,
M = U/a, the ratio of tg;s5 10 tyaue iS given by

taiff IM +1|Re,
twave ﬂ’f

Clearly, for high Reynolds number flows the diffusion time scale is much longer
than the wave-propagation time scale regardless of Mach number. Diffusion
will generally be important over very short distances such as the thickness of
a boundary layer, &, i.e, when L ~ . For specified freestream Mach and
Reynolds numbers, the relative magnitudes of the diffusion and wave-propagation
time scales are more-or-less confined to a limited range. This is not the case for
the dissipation time scale.

The specific dissipation rate, w, can vary by many orders of magnitude across
a turbulent boundary layer. Consequently, in the same flow, t4;ss can range from
values much smaller than the other time scales to much larger. This is a crude
reminder of the physical nature of turbulence, which consists of a wide range of
frequencies. Thus, regardless of the flow speed, we should expect the dissipation
time to have a nontrivial impact on numerical algorithms.

Because of the multiplicity of time scales attending use of turbulence-transport
equations, especially two-equation models and stress-transport models, we must
contend with an unpleasant feature known as stiffness. An equation, or system
of equations, is said to be stiff when there are two or more very different scales
of the independent variable on which the dependent variables are changing. For
example, consider the equation '

a.n

% = 100y (7.2)
The general solution to this equation is
y(t) = Ae %" + Be'® (7.3)
If we impose the initial conditions
y(0)=1 and H(0)=-~10 (7.4)
the exact solution becomes
Yeract(t) =€ (75)

Unfortunately, any roundoff or truncation error in a numerical solution can
excite the el0t factor, viz., we can inadvertently wind up with

yn.um..er:éco,.'.(t) — E_IOt + F.EilOt, lEl <1 (76)
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No matter how small ¢ is, the second term will eventually dominate the solution.
The equivalent situation for a system of equations is to have eigenvalues of the
characteristic equation of very different magnitudes.

It is easy to see that most turbulence-transport equations hold potential for
being stiff. The k-¢ model is notoriously stiff when some of the commonly used
viscous damping fiinctions are introduced. Stress-transport models that use the ¢
equation are often so stiff as to almost preclude stable numerical solution. Some
of the difficulty with the ¢ equation occurs because the dissipation time scale
is a function of both k and €. Transient solution errors in both parameters can
vield large variations in k/e, so that the dissipation time scale can assume an
unrealistic range of values. By contrast, near-wall solutions to models based
on the w equation have well-defined algebraic solutions approaching a solid
boundary, and are thus much easier to integrate.

7.2 Numerical Accuracy Near Beundaries

Proper treatment of boundary conditions is necessary for all numerical solu-
tions, regardless of the equations being solved. Because of the special nature
of turbulence-transport equations, there are two types of boundary behavior that
require careful treatment. Specifically, quantities such as dissipation rate, ¢, and
specific dissipation rate, w, grow so rapidly approaching a solid boundary that
they appear to be singular. In fact, w is singular for a perfectly-smooth wall.
Also, at interfaces between turbulent and nonturbulent regions, velocity and other
properties have nearly discontinuous slopes approaching the interface. Because
wall-bounded flows typically involve both types of boundaries, accurate numer-
ical solutions must account for the special problems presented by this unusual
solution behavior.

7.2.1 Solid Surfaces

We know that for a perfectly-smooth wall, the specific dissipation rate varies in
the sublayer as y—2 approaching the surface (see Subsection 4.6.3). Even if we
choose to use wall functions to obviate integration through the viscous sublayer,
analysis of the log layer (see Subsection 4.6.1) shows that both ¢ and w are
inversely proportional to distance from the surface. In either case, care must be
taken to accurately compute derivatives of such functions.

To illustrate the difficulty imposed by singular behavior approaching a solid
boundary, consider the function ¢ defined by

1
¢ = ;};, n=1or2 (7.7)
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The exact first and second derivatives are

dp __n &p _ n(n+1)
dy | gnH and dy? gt (7.8)
Using central differences on a uniform grid with y; = jAy, a straightforward
calculation shows that
d iv1— G- 2 1"
(ﬁ) e [ 5 ] (@) (7.9)
dy / ; 24y j* -1 Y/ cract
and
(d_zqﬁ") U2 ek B W I r i (7.10)
dy2 j (Ay)2 j2 =] dy.'.! exact .
where subscript j denotes the value at y = y;. Table 7.1 lists the errors

attending use of central differences as a function of Ay/y; for n = 1 and n = 2.

Table 7.1: Central-Difference Errors for ¢ = y~ .

[ 7 [ Ay/y; | % Error)n—1 | (% Error)n—; |

2 0.50 33 78
3 0.33 13 27
5 0.20 4 9
7 0.14 2 4
10 0.10 1 2

Clearly, significant numerical errors are introduced if the ratio Ay/y; is
not small. If wall functions are used (corresponding to n = 1), regardless of
how close the grid point nearest the surface lies, nontrivial numerical errors
in derivatives result for 5 < 5. Consequently, simply using wall functions as
effective boundary conditions applied at the first grid point above the surface is
unsatisfactory. Rather, the value for w or e should be specified for all points
below 7 = 4 (at a minimum) to insure numerical accuracy. This is undoubtedly
the primary reasen why most researchers find their numerical solutions to be
sensitive to near-wall grid-point spacing when they use wall functions. As an
alternative, a relatively large cell can be used next to the surface, so that for
example, 11 = 0, 12 = Ay, y3 = 1.2Ay, etc. By using the Rubel-Melnik (1984)
transformation, Program DEFECT (see Appendix C) automatically generates
such a grid.

When the k-w or Stress-w model is integrated through the viscous sublayer
for a perfectly-smooth surface (corresponding to n = 2), there is no practical
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way to avoid having Ay/y, ~ 1. The exact solution to the w equation in the

viscous sublayer is
6,

Boy?’
If we simply use the value of w according to Equation (7.11) at the first grid
point above the surface, Table 7.1 shows that the molecular diffusion term will
be in error by 78%. This, in turn, will increase values of w at larger values of y.
Recall that the surface value of w has a strong effect on the additive constant, C,
in the law of the wall (see Subsection 4.7.2). Thus, computing too large a value
of w near the surface will distort the velocity profile throughout the sublayer and
into the log layer. That is, numerically inaccurate near-wall w values can distort
the entire boundary-layer solution.

The remedy that has proven very effective for eliminating this numerical er-
ror is to use Equation (7.11) for the first 7 to 10 grid points above the surface.
Of course, these grid points must lie below y* = 2.5 since Equation (7.11)
is not valid above this point. This procedure has been used in Programs PIPE,
SUBLAY and EDDYBL (see Appendix C). This procedure is easy to implement
for boundary-layer programs and simple one-dimensional time-marching applica-
tions. However, it is very inconvenient for general flow solvers, especially when
unstructured grids are used.

An alternative procedure for accurately computing near-surface behavior of
w is to use the rough-wall boundary condition. As shown in Subsection 4.7.2
for the k-w model and Subsection 6.6.1 for the Stress-w model,

2

W~ yt < 2.5 (7.11)

w=-28, at =0 (7.12)
Vw
where
Sr=(200/k1)?, kt <5 (7.13)

The quantity k} = u.k, /1, is the scaled surface-roughness height.
In order to simulate a smooth surface, we simply require that k¥ be smaller
than 5. Then, combining Equations (7.12) and (7.13), we arrive at the slightly-

rough-surface boundary condition on w, viz.,
40000v

It is important to select a small enough value of k, to insure that ki < 5. If too
large a value is selected, the skin friction values will be larger than smooth-wall

values.
As a final comment, the near-wall solution to the w equation for a rough wall

is given by i
w

PR
E=b

W= yt <25 (7.15)
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where w,, is the surface value of w. An important test for numerical accuracy
of any finite-difference program implementing the w equation is to verify that
solutions match either Equation (7.11) or (7.15). If the program fails to accurately
reproduce the near-wall w variation, the program is unlikely to yield accurate
results.

For smooth-surface applications, Menter (1992c) proposes an alternative to
the slightly-rough-surface boundary condition. In Menter’s approach, the surface
value of w depends upon the distance of the first grid point above the surface,

Ays, according to

N
w= Y gt y=0 (7.16)

(Aya)”
where N is a constant. Comparison with Equation (7.14) shows that this corre-
sponds to setting the surface-roughness height according to

N ' >
W00y _ Nvw o 200045 (7.17)
BT (Bw) v

Choosing N = 1600, for example, means that whenever the grid is such that
Ay, < 1, the effective surface-roughness height will be less than 5. This, of
course, corresponds to a hydraulically-smooth surface.

The advantage of Menter’s method for smooth surfaces is simple. The solu-
tion is guaranteed to have sufficiently small k, to achieve hydraulic smoothness.
The only disadvantage is that the boundary condition for w is grid dependent,
which complicates the task of determining grid independence of the solution.
However, since the turbulence-model solution is more-or-less unaffected by de-
creasing kI below 5, the problem is minor.

Rapid variation of the dependent variable is not the only potential source of
numerical error near solid boundaries. Another serious consideration is round-
off error resulting from the relatively small difference between two numbers
of comparable magnitude. This problem is frequently encountered with low-
Reynolds-number k-e models. For example, damping functions such as

fo=1-— e Rer and fu=1- e—0-0115¢7 (7.18)

appear in the Lam-Bremhorst (1981) and Chien (1982) models. Approaching
the surface, desired asymptotic behavior depends upon accurate values of these
damping functions. If single-precision accuracy is used, it is advisable to use
Taylor-series expansions for the damping functions close to the surface. For
example, Chien’s f,, can be computed according to

1 _ e—0.0115y7 yt > 0.01
— 1 19
fu { 0.0115y™, yt <0.01 (2D

This procedure is used in Program EDDYBL (see Appendix C) to insure numer-
ically accurate solutions.
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7.2.2 Turbulent/Nonturbulent Interfaces

More often than not, turbulence-model equations that are in general usage appear
to predict sharp interfaces between turbulent and nonturbulent regions, i.e., in-
terfaces where discontinuities in derivatives of flow properties occur at the edge
of the shear layer. As noted in earlier chapters, these interfaces bear no relation
to the physical turbulent/nonturbulent interfaces that actually fluctuate in time
and have smooth Reynolds-averaged properties. The mixing-length model, for
example, exhibits a sharp interface for the far wake (see Subsection 3.3.1). That
is, the predicted velocity profile is

Ulz,y) = -1 38\/ — /%) 3/2] » y<9 (7.20)
yz=aé

where Uy 1s freestream velocity, D is drag per unit width, p is density, y is
distance from the centerline and § is the half-width of the wake. Clearly, all
derivatives of U above §2U/8y? are discontinuous at ¥ = §. Such a solution is
called a weak solution to the differential equation.

By definition [see Courant and Hilbert (1966)], a weak solution to a partial
differential equation

E[U] —QP(:B Yy, u) + —Q('c y,u) +S(z,y,u) =0 (7.21)

satisfies the following conditions.

1. w(x,y) is piecewise continuous and has piecewise continuous first deriva-
tives in two adjacent domains, i; and R.

2. Lju] = 0in Ry and R;.

3. For any test function ¢(x,y) that is differentiable to all orders and that
is identically zero outside of R; and Rp, the following integral over the
combined region R = R; U Ry must be satisfied..

/ / [ i Qﬁ - Sgﬁ} dzdy = 0 (7.22)

A similar result holds for a system of equations. Clearly, Equation (7.22) can be
rewritten as

/ [; [ dﬁ?qdwdi / / [ap . 5] drdy =0 (7.23)
T
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The second integral vanishes since P, (} and S satisfy the differential equation in
both R; and Ry. Then, using Gauss’ theorem, if I" is the curve of discontinuity
that divides R; and Ry and m = (n,,n,) is the unit normal to I, there follows:

frqb ([Plne + [Qlny) ds = 0 (7.24)

The symbols [P] and [@Q] denote the jumps in P and @ across I'. Since the
function ¢ is arbitrary, we can thus conclude that the jump condition across the
surface of discontinuity is given by

[Pln, + [Qlny =0 (7.25)

For example, in the case of the far-wake solution given by the mixing-length
model, we have P = Ux,U, Q@ = —(ad0U/8y)? and S = 0. Inspection of
Equation (7.20) shows that the jumps in P and @ are both zero, corresponding
to the fact that the discontinuity appears in the second derivative rather than the
first.

The occurrence of weak solutions causes problems on at least two counts.
First, the jump condition is not unique. For example, if () can be written as a
function of P, we can always multiply Equation (7.21) by an arbitrary function
¥(P), and rearrange as follows:

oF 3G
dx Oy

+ 8 =0 (7.26)

where

7 / PP and Ge f W(P)Q' (P) dP 727
The jump condition then becomes
[Flng + [G]ny =0 (7.28)

In other words, we can have any jump condition we want (and don’t want!).
This means we have no guarantee that our solution is unique.

The second difficulty posed by the presence of weak solutions has an adverse
effect on accuracy and convergence of numerical-solution methods. For example,
a central-difference approximation for a first derivative is second-order accurate
provided the function of interest is twice differentiable. However, if the function
has discontinuous first or second derivative, the accuracy of the central-difference
approximation becomes indeterminate. Maintaining second-order accuracy is
then possible only if we know the location of the curve of discontinuity in
advance. For a hyperbolic equation, this curve is a characteristic curve so that
the method of characteristics, for example, can provide a high degree of accuracy
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in the vicinity of such discontinuities. Since we don’t know the location of the
characteristics a priori in standard finite-difference computations, accuracy is
suspect when the equations have weak solutions.

One-equation models have problems similar to the mixing-length model near
turbulent/nonturbulent interfaces. Spalart and Allmaras (1992), for example,
demonstrate existence of weak solutions to their one-equation model at such inter-
faces. Saffman (1970) was the first to illustrate weak solutions for a two-equation
model. He discusses the nature of solutions to his k-w? model approaching a
turbulent/nonturbulent interface. In fact, he builds in weak-solution behavior by
choosing his closure coefficients to insure that approaching the interface from
within the turbulent region, the streamwise velocity and turbulence length scale

vary as
Us—-Ux(§—y) and £=£kY2/w x constant as y— & (7.29)

where the interface lies at y = §. Vollmers and Rotta (1977) discuss solution
behavior near a turbulent/nonturbulent interface for their k-4¢ model, while Rubel
and Melnik (1984) perform a similar analysis for the k-e model. Cazalbou,
Spalart and Bradshaw (1994) confirm existence of weak solutions for most k-e,
k-k¢ and k-w models (while demonstrating that there are parametric ranges of
the closure coefficients where regular solutions exist). Finally, inspection of the
k-e model free shear flow velocity profiles [Figures 4.8 — 4.12] illustrates the
nonanalytic behavior at the edge of the shear layer.

Rubel and Melnik (1984) offer an interesting solution for thin shear layers
that effectively maps the turbulent/nonturbulent interface to infinity and implicitly
clusters grid points near the interface. Their transformation consists of introduc-
ing a new independent variable, £, defined in terms of the normal distance, v,
= d d d

Y

d§ = 7 or aE I/Tdy
where v, is kinematic eddy viscosity. The Rubel-Melnik transformation, which
is useful primarily for self-similar flows, improves numerical accuracy because
the edge of the shear layer that occurs at a finite value of ¥ moves to infinity
in terms of the transformed independent variable £ (provided v = 0 in the
freestream). Since v — 0, the transformation produces fine resolution near
the interface. For example, if the freestream velocity, Uy, is constant, close to
the shear-layer edge, convection balances turbulent diffusion in the streamwise

momentum equation. Hence,

pidl,_ Al U 7.31
dy  dy \' " dy (7.31)

where V is the entrainment velocity, which must also be constant in order to
satisfy continuity. Since shear layers grow in thickness, necessarily V < 0.

(7.30)
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Multiplying both sides of Equation (7.31) by v, and using Equation (7.30), we
arrive at

daU d*U
VE = '&‘é:é* (7.32)
for which the solution is
U=U.,-Ue"E (7.33)

where I/ is a constant of integration.

Using the Rubel-Melnik transformation, it is a straightforward matter to de-
termine the nature of solutions to turbulence-model equations approaching a tur-
bulent/nonturbulent interface. Applying the transformation to the k-¢ model, for
example, we find

dk  (dU\? , 1 d%
VE = (_&’?) — CLuk* + aa-g_i (7.34)
de € (dU 2 1 d?%
Vd_g = Cﬁlg \?g“) - Cegcukﬁ + ;;ag—z (7.35)

Provided the closure coefficients o, and o are both less than 2, the production
and dissipation terms are negligible in both equations. The solution approaching
the interface is '

ke~ KeT Ve ¢~ EeVE (o <2, 0e<2) (7.36)

where X and £ are integration constants. Thus, the eddy viscosity is
2
Vg ~ CM%— eBar=agdVie (7.37)
Finally, substituting Equation (7.37) into Equation (7.30) and integrating yields

eVé o (1 — y/5)@or—ea)™ (7.38)

So, the solution to the k-e model equations approaching a turbulent/nonturbulent
interface from the turbulent side behaves according to

U.—U ~ U1 —y/)@os—oa™
ko~ K(1—y/6)or@ok—0a™ as  y— 6 (7.39)
€ ~ E(1—y/§)TBormo)™
Using the standard values o = 1.0 and o, = 1.3, the k-e model predicts
Ue —U ~ UL ~y/8)07
ko~ K(1—y/8)10/7 as y— 0 (7.40)
e ~ E(1—y/5)B/T
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A similar analysis for the k-w model with cross diffusion included (but no
stress limiter) shows that the asymptotic behavior of U, k and w is given by

Ue=U ~ U —y/5)™
ko~ K(1—y/8)™ as  y—o (7.41)
w ~ W(l-y/é)"

where U, K and W are integration constants and the three exponents are!

oo” o o — o040

TNy = ’ g = Pl = 7.42
Y -0+ o4 o—0*+ 04, “ g —o*40o :42)
do do

In order for the solution to give U — U, k — 0 and w — 0 as we approach
the turbulent/nonturbulent interface from the turbulent side, all three exponents in
Equations (7.42) must be positive. This is true provided the closure coefficients
o, 0% and o4, satisfy the following constraints.

Odo > 0° —0o  and | o > Odo (7.43)

These are identical to the constraints deduced by Lele (1985) in analyzing a
turbulent front (see Subsections 4.5.3 and 4.5.4). Table 7.2 lists the values of
the exponents for several k-w models, each having unique behavior,

Table 7.2: Turbulent/Nonturbulent Interface Exponents for k-w Models.

[ Model [ o [ o ] 04 | 0=0"+040 | 7w [ e | ne |
Heilsten (2005) | 1.000 1.160 | 0.400 0.300 3.333 3333 2.333
Kok (2000) 0.500 | 0.667 | 0.500 0.333 1.000 1.500 (3.500
Menter (1992¢) | 0.856 1.000 | 1.712 1.568 0.546 | 0.546 | -0.454
Wilcox (2006) | 0.500 | 0.600 | 0.125 0.025 20 20 19

1. Hellsten’s model features continuous second derivatives for U, k and w, so
that i1ts weak-solution behavior should be of no consequence in a second-
order accurate numerical solution.

2. Kok’s model has classic weak-solution behavior with discontinuities in the
stope of U and w.

3. Because Menter’s model fails to satisfy the second condition of Equa-
tion (7.43), the solution for w approaches oo as y — 4.

4. Wilcox’s model is analytic approaching the interface so that it does not
have nonphysical weak-solution behavior.

[ With a stress limiter included (see problems section), ny and n, are unchanged, but the solution
for the velocity is such that n, = rx.
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Hellsten makes the case for choosing the values of the model’s closure coef-
ficients based on achieving smooth solution behavior at a turbulent/nonturbulent
interface. Part of Hellsten’s arguments include a claim that in order to achieve
such behavior it is necessary to have o* > 1. Since the Wilcox (2006) k-w model
has a completely analytical solution at such an interface while having o* < 1, a
closer look is in order.

(U — Ue)

1 T T T T

2 F

_3 1 L i 1
0.6 0.7 0.8 0.9 1.0 1.1
y/é
Figure 7.1: Computed and measured velocity defect near the boundary-layer
edge for a flat-plate boundary layer using three k-w models: — Wilcox (2006);

- - - Kok (2000); --- Hellsten (2005); o Klebanoff (1955); O Wieghardt and
Tillman (1951); [N Winter and Gaudet (1973).

Figure 7.1 compares computed and measured [Klebanoff (1955), Wieghardt
and Tillman (1951) and Winter and Gaudet (1973)] velocity profiles in the im-
mediate vicinity of the boundary-layer edge for a constant-pressure boundary
layer. Results for the Wilcox model and the Kok model were obtained from
Program DEFECT (see Appendix C), which is extremely accurate at the turbu-
lent/nonturbulent interface. The Hellsten-model profile is from Hellsten (2005).
Hellsten presents a similar graph showing the linear approach of Kok’s velocity
profile and the discontinuity in slope at the interface. By contrast, both the Hell-
sten and Wilcox models exhibit a smooth approach to freestream values, with
both curves falling within experimental-data scatter.

The apparent contradiction in Hellsten’s claim regarding the minimum value
of o* needed to achieve smooth solutions near a turbulent/nonturbulent interface
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is easily resolved. Inspection of Figure 7.1 shows that below y/8 ~ 0.95 all
three velocity profiles are very nearly linear functions of /5. The region in
which the asymptotic solution given in Equations (7.41) and (7.42) is valid lies
well within the upper 1%-5% of the boundary layer, depending on the precise
values of n,, ng and n,. Consequently, on the scale shown in the graph, it
is difficult to discern much difference between the solutions for the Hellsten
(2005) model and the Wilcox (2006) model. As noted above, both models have
continuous second derivatives (and higher) approaching the interface and should
be expected to cause no troublesome numerical issues to arise.

The solution for the Wilcox (1988a) k-w model is a quite a bit more com-
plicated. This model has ¢ = o* = 1/2 and there is no cross-diffusion term
so that og, = 0. For this model, only the dissipation terms are negligible. The
production term in the transformed & equation yields a secular term, which com-
plicates the solution. That is, the approximate transformed equations for k& and
w assume the following form.,

d’k dk

pri 2V = P V222V E (7.44)
d?w dw 2 28 ov
el G ) o MO e

7> 2V € 2aVU 7 € (7.45)

The solution for k and w is
k~UVEe2VE, W~ WE (7.46)

where W is an integration constant. Computing the eddy viscosity and substi-
tuting into Equation (7.30), we arrive at

Uv [ .
Yy~ 1) + W‘ / €1+a62‘/£df (747)
£

Integrating by parts, we can approximate the limiting form of the integral for
& — oc as follows.

u?
Ol s girag?Ve (7.48)

Now, we must solve this equation for £ as a function of § — y. To do this,
let

2W
n= 7z (0—y) (7.49)
Then, Equation (7.48) simplifies to
n~gitaeVe (7.50)
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This equation can be solved for £ as a function of n by assuming

2VE ~ tnn + ¢(n) (7.51)

where ¢(n) is a function to be determined. In the limit ¢ — oo, which
corresponds to  — 0, the approximate solution for ¢(7) is

nn
n) ~ —(1 — ;
o(n) ~ —(1+ a)n ( ZV_) (7.52)
With a bit more algebra, there follows
(1+a)/2
eVé x nt/? (33:) (7.53)
Inn

Thus, for the Wilcox (1988a) k-w model approaching a turbulent/nonturbulent
interface from within the turbulent region, we have

Ue—-U ~ UVX )
k ~ —=KMni
w ~ W(=fn))"® ¢oas  y—d (7.54)
N~ (1-—=y/d)
[—€n(l —y/8)] +

Clearly, w approaches zero very slowly from the turbulent side as compared
to the variation of €/k ~ (6 — y)3/7 predicted by the k-¢ model. Also, the
velocity profile has discontinuous first derivative at the shear-layer edge, or more
generally, at any turbulent/nonturbulent interface.

Wilcox (1998) has verified that the asymptotic behavior predicted in Equa-
tions (7.54) is consistent with results of numerical computations. Figure 7.2
compares numerical solutions with Equation (7.54). The computations are for
an incompressible flat-plate boundary layer, and have been done using Program
EDDYBL (see Appendix C) with two finite-difference grids. The first grid has
140 points normal to the surface, while the second grid has 289 points. As
shown, the 289-point solution matches the closed-form solution to within 3% of
scale for U, k and w. The largest discrepancies are present for points very close
to the interface. This is true because the computation has a nonzero value for w
in the freestream, while the closed-form solution is strictly valid for w = 0 1n
the freestream. Because of the coarser resolution, the 140-point solution shows
slightly larger differences, again mainly for points closest to the interface. Re-
sults shown clearly indicate that the numerical solution is consistent with the
weak-solution.
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Figure 7.2: Velocity, k and w profiles near a turbulent/nonturbulent interface,
Wilcox (1988a) k-w model: o 140 points; e 289 points; — Equation (7.54).

7.2.3 Sensitivity to Freestream Boundary Conditions

Usually it is more convenient to assign small nonzero values to k£ and other
turbulence parameters in the freestream, especially when the parameter appears
in the denominator of the eddy viscosity. Cazalbou, Spalart and Bradshaw (1994)
show that when this is done in boundary-layer computations with the k-e model,
the weak solution prevails below the interface. Small gradients in & and € appear
above the interface that yield an asymptotic approach to the prescribed freestream
values. There is “no significant influence on the predicted flow.”

By contrast, Menter (1992a) shows that for the far wake, in which the entrain-
ment velocity increases in magnitude linearly with distance from the centerline,
the Wilcox (1988a) k-w model predicts that £ and w decay exponentially with
distance squared. However, they decay at the same rate so that the eddy vis-
cosity remains constant. As a consequence, consistent with results presented
in Section 4.5, the freestream value of w has a nontrivial effect on the solu-
tion. Menter indicates a smaller effect on boundary layers, primarily because of
the large values of w prevailing near the surface. The behavior of w in Equa-
tion (7.54) is consistent with Menter’s observation that the Wilcox (1988a) k-w
model solutions have discontinuous derivatives at the shear layer edge. However,
the discontinuity in dw/dy would probably be difficult to detect.

The Wilcox (2006) k-w model is far less sensitive to the freestream value of
w than its predecessors. There is nevertheless some sensitivity [cf. Figure 4.13].
However, as long as the freestream value of w is less than 1% of the maximum
value in a turbulent shear layer, the sensitivity is of little consequence.

Studies have been published [cf. Bardina et al. (1997)] where the freestream
value of w has been set to very large values. With an extremely large freestream
w, any k-w model solution for many flows, especially free shear flows, will
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be grossly distorted. This type of analysis is very misleading because having
freestream values of w more than a percent or so of the maximum value in the
turbulent region is physically incorrect. What w quantifies is the vorticity of the
energy containing eddies. Assigning huge values of w in the freestream would
imply that there is significant fluctuating vorticity above the turbulent region,
which is absurd.

cf/cfo
2.0 1 1

er /

10 /""" .

0.5 =

6.0 1 /]
0.000 0.005 0.010 0.015

Qoo /o (%)

Figure 7.3: Effect of freestream vorticity on an incompressible, laminar flat-plate
boundary later.

As an analogy, consider the laminar boundary layer with zero pressure gra-
dient. The boundary-layer equations admit a similarity solution, viz., the Blasius
solution. Imagine that, rather than imposing the freestream boundary condition
on the velocity, we choose to specify the freestream value of the vorticity. For
zero freestream vorticity, the solution is identical to the Blasius solution. Fig-
ure 7.3 shows how the skin friction varies with the freestream vorticity, Qoo.
There is significant distortion when ., exceeds one thousandth of a percent
(0.001%) of the peak vorticity, 2, in the boundary layer. How different is this
from selecting a physically unrealistic freestream boundary condition on the vor-
ticity of the energy-containing eddies with the k-w model? We can reasonably
conclude the following.

The same logic that would cite the sensitivity to a freestream value of w
that exceeds 1% of the peak value in the turbulent region as a flaw in the
turbulence model would conclude that Prandtl’s boundary-layer equations are
fundamentally flawed for the same reason!
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7.2.4 Viscous-Interface Layer

In principle, solutions with discontinuous derivatives will not occur if molecular
viscosity is included in the diffusion terms of the equations of motion. As shown
by Saffman (1970), there is a thin viscous-interface layer of thickness

0vi ~v/|V] (7.55)

in which the discontinuities are resolved. This is a singular-perturbation problem
in the limit {V{é,;/v — oo, and the weak solution discussed above is the outer
solution. The inner solution holds in the viscous-interface layer. For example,
in the interface layer, Saffman’s equations simplifv to

VU AT Y]
dy dy | dy

e - i—(vﬁLa—)d—k} > (7.56)
dy dy | dy '
p? 2 [(v+k) ]

dy dy | w) dy | )

These equations must be solved subject to the foliowing boundary conditions,
which correspond to formal matching of the solutions that hold on each side of
the turbulent/nonturbulent interface:

K VI(§ —
U —-U - U(b—y), k—)K((Y—y)Q wa_f}_[(‘s_y) 0 | |(V y)—>00
(7.57)

and |
Uo—U—-0, k—0, w—0 as _______[V|(6—y) — —00 (7.58)

v

As can be easily verified, for 0 = o* = 1/2, the solution is given by

3 2 \
U.-U = U|V| ( w
K2v \1+V3w/Kv
V2.2
- 7.59
k = > (7.59)
B |V |w _:?_E_ Vaw
0=U = g S lEn L |

In practice, finite-difference grids are never sufficiently fine to resolve the
viscous-interface layer. Generally, grid points are packed close to the surface to
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permit accurate resolution of the sublayer. Hence, even when molecular viscosity
is included in a typical finite-difference computation, turbulent/nonturbulent in-
terfaces are not sufficiently resolved. As a consequence, the interfaces are sharp,
and the weak solutions generally prevail. However, truncation error, numerical
diffusion and dissipation will generally yield diffused solutions close to the in-
terfaces. The most significant numerical problem typically encountered is the
appearance of nonphysical negative values of k and/or other normally positive
turbulence parameters such as w, € and £.

For self-similar flows such as the far wake, mixing layer, jet and defect layer,
the Rubel-Melnik transformation cures the problem by mapping the interface to
o0o. Programs WAKE, MIXER, JET and DEFECT (see Appendix C) all use
this transformation. In addition to eliminating difficulties associated with the
turbulent/nonturbulent interface, the transformation linearizes the first and second
derivative terms in the equations. This linearization tends to improve the rate of
convergence of most numerical methods. The only shortcoming of the method
is its sensitivity to the location of “o00.” Using too large or too small a value of
Emaa (the farfield value of £) can impede convergence of the numerical solution.

In general finite-difference computations, for which the Rubel-Melnik trans-
formation is impractical, the correct jump condition will be obtained provided the
diffusion terms in all equations are differenced in a conservative manner. For the
same reasons, we use conservative differencing for the Navier-Stokes equation
to guarantee that the exact shock relations are satisfied across a shock wave in a
finite-difference computation. Program EDDYBL (see Appendix C), for exam-
ple, uses conservative differencing for diffusion terms and rarely ever encoun-
ters numerical difficulties attending the presence of sharp turbulent/nonturbulent
interfaces.

For nonzero freestream values of k, etc., some researchers prefer zero-gradient
boundary conditions at a boundary-layer edge. While such conditions are clean
from a theoretical point of view, they are undesirable from a numerical point of
view. Almost universally, convergence of iterative schemes is much slower with
zero-gradient (Neumann-type) conditions than with directly-specified (Dirichlet-
type) conditions.

In order to resolve this apparent dilemma, we can appeal directly to the equa-
tions of motion. Beyond the boundary-layer edge, we expect to have vanishing
normal gradients so that the equations for k and w simplify to the following:

dk .
Ue = — _"5"‘ wc ke (7.60)
dx
. dwe _ —Bow? (7.61)
dr :

where subscript e denotes the value at the boundary-layer edge. The solution t0
Equations (7.60) and (7.61) can be obtained by simple quadrature, independent
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of integrating the equations of motion through the boundary layer. Once k. and
we are determined from Equations (7.60) and (7.61), it is then possible to specify
Dirichlet-type boundary conditions that guarantee zero normal gradients. Clearly,
the same procedure can be used for any turbulence model. Program EDDYBL
(see Appendix C) uses this procedure,

7.3 Parabolic Marching Methods

In general, numerical methods for solving parabolic systems of equations such as
the boundary-layer equations are unconditionally stable. A second-order accurate
scheme like the Blottner (1974) variable-grid method, for example, involves in-
version of a tridiagonal matrix. If the matrix is diagonally dominant, the scheme
will run stably with arbitrarily large streamwise stepsize, Az. Turbulent bound-
ary layer computations using algebraic modeis often run with Az/§ between
I and 10, where J is boundary-layer thickness. By contrast, early experience
with two-equation models indicated that much smaller steps must be taken. Ras-
togi and Rodi (1978) found that their three-dimensional boundary-layer program
based on the Jones-Launder (1972) k-e¢ model required initial steps of about
0/100, and that ultimately Az could not exceed ¢/2. Similar results hold for
models based on the w equation.

Wilcox (1981b) found that the problem stems from a loss of diagonal dom-
inance caused by the production terms in the turbulence-model equations. To
illustrate the problem’s esscnce, consider the k-w model’s turbulence kinetic
energy equation for an incompressible two-dimensional boundary layer, viz.,

3, \2
08y B [CUIORE
ox Jy W

The following analysis is based on the Blottner variable-grid method, which
is the scheme implemented in Program EDDYBL (see Appendix C). This al-
gorithm uses a three-point forward difference formula [Adams-Bashforth — see
Roache (1998a)] in the streamwise direction, central differencing for the normal
convection term, and conservative differencing for the diffusion terms. Hence,
discretization approximations for all except the source terms are as follows:

ok U

d
ﬁ*w} k -+ B [(I/ + o*vr) %} (7.62)

Ué—m = .A_A_.’L'— (3}Cm_+1,n '_ 4km,n =t km—»l,n) (763)
ok .V
'5“1}' = m (k173—+—],n+1 S k?n—}—l,n—l) (764)
o . ok . V+(km+1,n+1 == km—l—l,n) — Vn_(km—f—l,'! - km-{—l,n— )
5}; |:(.V + o VT) é—ij—] s (Ay)g 1 i 1

(7.65)



400 CHAPTER 7. NUMERICAL CONSIDERATIONS

where k., . denotes the value of k¥ at x = x,, and ¥y = y», and Ay denotes
the vertical distance between grid points. Unsubscripted quantities are assumed
known during the typically iterative solution procedure. Also, the quantity v~
denotes the value of (v +o*v,) midway between y,,_; and ¥,, while v denotes
the value midway between ¥y, and y,+1. For simplicity, we assume points
are equally spaced in both the x and y directions, so that the grid consists of
rectangular cells. Figure 7.4 shows the finite-difference molecule.

F-Az—]
n+1
" i
Ay
n—1 —L

Figure 7.4: Finite-difference molecule for Blottner’s variable-grid method.

Turning to the source terms, the simplest second-order accurate discretization
approximation is

oU /3y)? . . [(oU/oy)? .

[——( /99)° _ g w] k = [m( /99 _ o] kmyim (7.66)

w W

where the quantity in brackets is also evaluated at (m + 1, n) using values ex-
trapolated from (m, n) and (m — 1, n). Substituting Equations (7.63) — (7.66)
into Equation (7.62) and regrouping terms leads to a tridiagonal matrix system
as follows:

Ankm—i—l,n—l + Bnkm—I—l,n + C’flk?n+l,7!.+1 = Dn (7-67)

where A,,, B,, C, and D,, are defined by

_ Vv v LU v +ut (8U/0y)? g
Anf=r [2Ay - (Ay)z] v V0% o G
(7.68)
|4 vt U
_ _ e B 7.69
Cn |:2A'y (Ay)Q:! 5 Dn Az [4km,n km 1, ] ( )

Now, in order to have a diagonally dominant system, the condition

Bn > —(An + Cp) (7.70)
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must be satisfied. Substituting Equations (7.68) — (7.69) into Equation (7.70)
yields the following condition.

U _ @U/dy? |

3 Az w

B*w >0 (7.71)
If dissipation exceeds production, so that 3*w > (8U/8y)? /w, Equation (7.71)
is satisfied so long as we march in the direction of flow (i.e., so long as U and
Az are of the same sign). The system is then said to be unconditionally stable.
When production exceeds dissipation, we have the following limit on stepsize.

3wl

Arx < (Aﬁ:)theory = (BU,/By)z _ B*w.?

(7.72)

Hence, the scheme is conditionally stable, subject to Equation (7.72).

107 .
Rep o
108 |
A
(Ax )M’y b
105 Empiricalty-Determined N
Stepsize Threshold
4 1 L A "
10 01 10 1.0
y/é

Figure 7.5: Theoretical and empirically determined stepsize threshold Jor a flat-
plate boundary layer. [From Wilcox (1981b) — Copyright ©) AIAA 1981 —
Used with permission.]

To demonstrate the validity of Equation (7.72), Wilcox (1981b) presents com-
puted results for an incompressible flat-plate boundary layer using the Wilcox-
Rubesin (1980) k-w? model. At a plate-length Reynolds number, Re,, of
1.2 - 10% stable computation is found empirically to be possible provided the
Reynolds number based on Az satisfies Rea, < 2.2 104, which corresponds
to Az/d = 1.15. Figure 7.5 shows Rea, as predicted by Equation (7.72)
throughout the boundary layer. The minimum value of Rea, according to Equa-
tion (7.72) is 1.9-10* and occurs at y/§ = 0.012. This close agreement verifies
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that the source of instability is lack of diagonal dominance in the tridiagonal ma-
trix system defined in Equations (7.67) — (7.69).

To remedy this situation, note that because of nonlinearity, Equation (7.67) al-
ways requires an iterative solution. Letting superscript ¢ denote iteration number,
we replace B, and D,, by the following revised discretization approximations:

U v +vt (8U/8y)?

B, = 3A;z: + By " + (1 + ) Bw (7.73)
D, = v 4k k Yk 7.74
n — Az [ e m—l,n] S E ’[,[)kﬁ w m+1,n ( - )

where 9, will be defined below. Then, Equation (7.67) is replaced by
Aﬂkin—{—l,n—wl + Bﬂ-k:n-l-l,ﬂ. + an:.n-i-l,n-l-l = Dy, (7.75)

Inspection of Equations (7.73) — (7.75) shows that when convergence has
been achieved (i.e., when k%, . and &} !,  differ by a negligible amount),
terms on the right- and left-hand sides of Equation (7.75) proportional to 1/
cancel identically. Hence, k7, ,, ,, satisfies the correct equation. The advantage
of this procedure becomes obvious upon inspection of the stability condition,

which now becomes

3

U  (8U/8y)?
Azx w

Clearly, ¥, can be chosen to insure that this inequality is always satisfied, re-
gardless of the value of Az. This corresponds to unconditional stability.

Numerical experimentation shows that the best results are obtained when
(1 + 1) B*w exceeds (OU/8y)? /w by about 30%, a condition that is insured by
defining 1 as follows.

+{(1+ %) B'w>0 (7.76)

=, (U y)? < Br?
R 2 2 *, 2
Fe 2 15’ (oU/0y)* > B*w

A similar factor, #,,, must be introduced for the w equation, and experience has

shown that selecting
Yo = Wy (7.78)

is satisfactory to achieve both unconditional stability and rapid convergence.
The prescription for ¢x and v, given in Equations (7.77) and (7.78) permits
stepsizes comparable to those used with algebraic models. While the numerical
procedure is unconditionally stable for other values of 1, using these values
for v, and 1, optimizes k-w? and k-w model computations with respect to the
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Table 7.3: Values of 1. for Low-Reynolds-Number k-¢ Models.

| Model | v |
Jones-Launder (1972) 0.50
Launder-Sharma (1974) 0.50
Lam-Bremhorst (1981) 0.50
Chien (1982) -0.25
Yang-Shih (1993) -0.25
Fan-Lakshminarayana-Barnett (1993) | -0.25

number of iterations required for the solution to converge. Interestingly, if ¥ 1s
too large, say 1y;, = 2, stable integration is inhibited. The value of 1, cannot be
too large either, although the upper bound appears to be dependent upon details
of the specific model.

The same analysis applies to the k-e¢ model. For the £ equation, writing
Equation (7.77) in terms of the model’s variables leads to the following entirely
equivalent form.

2
10’
ve(QU/Oy)? 7

A 5 5
. 0’ vr(OU/dy) b s

vr(OU/9y)? < e

Ve = (7.79)

By contrast, the value of the corresponding factor for the ¢ equation, ., is
very much dependent upon details of the model. Low-Reynolds-number vis-
cous damping functions have a pronounced effect on the most appropriate value.
Table 7.3 lists the values of ¢, used in Program EDDYBL (sec Appendix C)
for six different low-Reynolds-number k-e¢ models. The values listed have been
found empirically to yield optimum convergence rates for incompressible bound-
ary layers.

7.4 FElementary Time-Marching Methods

One of the most effective procedures for solving complex flowfields is the use
of time-marching methods. If the desired solution is unsteady, time-marching
solutions yield a true time history. Time-marching methods can also be used
for steady-flow problems by letting the solution evolve in time until temporal
variations become negligibly small. That is, we begin with an initial approxima-
tion and update the solution at each timestep until the solution differs between
timesteps by less than a prescribed tolerance level. Prior to discussing the impact
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of turbulence-model source terms on explicit and implicit methods, this section
presents a brief overview of these methods. For more complete details see a gen-
eral text on Computational Fluid Dynamics such as Peyret and Taylor (1983),
Anderson et al. (1984), Minkowycz et al. (1988), Ferziger and Peri¢ (1996) or
Roache (1998a).

The simplest time-marching schemes are explicit methods, such as the
DuFort-Frankel (1953), Godunov (1959), Lax-Wendroff (1960) and MacCor-
mack (1969) methods. Most explicit schemes were developed prior to 1970.
In an explicit scheme, the solution at time ™+ depends only on past history,
1.e., the solution at time ¢t". For example, consider the one-dimensional wave

equation:

ok Bk
5 tUz =0 U>0 (7.80)

where k is a flow property, U is velocity, ¢ is time and z is streamwise direction.
Letting k7' denote k(x;,t™), we approximate Ok /8t with a forward-difference
approximation so that

Sk k‘r‘1+1 . k::,
‘;—t = T + O(At) (7.81)

where At = t™+1 —¢™. For simplicity, consider simple upwind differencing in
which we approximate 9k /9x according to
Y S
% = %‘mff—l + O(Az) (7.82)
Using these discretization approximations, we arrive at the following first-order
accurate difference equation that approximates Equation (7.80).
K = k7 - % (k7 — k1) (7.83)

This is not a particularly accurate method, but nevertheless illustrates the
general nature of explicit schemes. Note that all terms on the right-hand side of
Equation (7.83) are known from time ¢". Hence, k;"H is obtained from simple
algebraic operations. Because only algebraic operations are needed (as opposed
to inversion of a large matrix), explicit methods are easy to implement.

The primary shortcoming of explicit schemes is a limit on the timestep
that can be used. For too large a timestep, solution errors will grow with in-
creasing iterations and the computation becomes unstable. The most commonly
used method for determining the stability properties of a time-marching finite-
difference scheme is von Neumann stability analysis [see Roache (1998a) or
Anderson et al. (1984)]. In this method, we introduce a discrete Fourier series
solution to the finite-difference equation under study, and determine the growth
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rate of each mode. If all Fourier modes decay as we march in time, the scheme
is stable. However, if even a single mode grows, the scheme is unstable. We
write each Fourier component as

kD = Greinan) (7.84)

where G is called the amplitude factor, i = v/—1 and « is wavenumber. The
stability of a scheme is determined as follows:

|G| < 1, Stable
|G| =1, Neutrally Stable (7.85)
|G} > 1, Unstable

In general, G is complex, and the notation G™ means G raised to the power n.

The amplitude factor for Equation (7.83) is

Gi= T Sl — e=™),  where 0=kAz (7.86)

Thus,

G2 =1+ 2(1 — cos 8) (7.87)

ot N |
Az Ax

In order to have a stable scheme, |G| must be less than or equal to 1 for all
possible values of 6. Clearly, for the upwind-difference scheme, errors will not
grow provided the condition

UAt (UAt )

At < éUE or W = % <1 (7.88)
is satisfied. This is the famous Courant-Friedrichs-Lewy (1967), or CFL con-
dition. It arises because a disturbance traveling at speed U cannot propagate
a distance exceeding Ax in a time equal to At. Ngg. is known as the CFL
Number.

Explicit methods are of interest in modern CFD applications mainly for time-
dependent flows. Their algebraic simplicity makes them especially easy to im-
plement on any computer. Their primary drawback is their conditional stability,
and thousands of timesteps are often needed to achieve steady-flow conditions.
There has been renewed interest in these methods because of their suitability
for massively-parallel computers, where they may actually be more efficient than
implicit schemes which can run with larger timesteps but are trickier to program.

Implicit methods date back to 1947 when the Crank-Nicolson (1947) method
first appeared. Other methods such as the Euler [Lilly (1965)] and Alternating
Direction Implicit (ADI) schemes [Peaceman and Rachford (1955)] are implicit.
The solution at time "+ and location x; in this type of scheme depends not only
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upon the solution at the earlier timestep, but upon the solution at other spatial
locations at time ¢"*+! as well. For example, the Crank-Nicolson method uses

Ok . 1 f{k*,—k?, kMl _grtl .

Thus, Equation (7.80) is approximated by the following second-order accurate
difference equation:

RS BP0 = kD - A (K - kD)) (7.90)
where UAL
A= 7.91
4Azx ( )

Hence, as with the Blottner method discussed in the preceding section, a
tridiagonal matrix system of equations must be solved. Although inverting any
matrix is more time consuming than solving a simple algebraic equation, the
increased complexity is attended by a significant increase in the maximum per-
missible timestep. That is, stability analysis shows that the scheme defined in
Equation (7.90) is unconditionally stable.

Implicit schemes have proven to be especially useful for steady-flow compu-
tations where the CFL limit can be exceeded by factors as large as 5. While these
schemes will run at a larger CFL number, using larger values of At sometimes
introduces significant truncation errors if convective effects have a significant
effect on the physics of the flow. The number of timesteps required, relative to
explicit methods, to achieve steady-flow conditions typically is reduced, although
the factor is N2, where n < 1.

Recall from Section 7.1 that there are three physically relevant time scales
when turbulence-model equations are used. If we use an explicit finite-difference
scheme to approximate the Favre-averaged Navier-Stokes equation, stability anal-
ysis shows that the wave speed is |i| + a, where @ is mass averaged velocity and
a 1s sound speed. If v denotes kinematic viscosity, the wave-propagation and
diffusion timestep limitations are as follows.

Az (Ax)?

At < — and At<
i} + a 2v

(7.92)

We might also anticipate that including source terms in the stability analysis
would lead to an additional timestep constraint such as At < tgs. This is
indeed the case, and this timestep limitation is sometimes more restrictive than
either condition in Equation (7.92).
To illustrate the problem, we add a source term, Sk, to Equation (7.80),
ivin
EEE ok ok

5t Uz, = Sk (7.93)
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If we suppose that & denotes turbulence kinetic energy, the condition S > 0
corresponds to production exceeding dissipation, and vice versa for § < 0. To
cast this equation in discretized form, we use Crank-Nicolson differencing and
we approximate the source term as follows:

Sk = 8 [k} + (1 — p)kI+)] + O [(¥ — 1AL, (A7 (7.94)

where v lies between 0 and 1. Hence, our finite-difference approximation to
Equation (7.93) is

ki th = k7 — XN(RJY 4+ Ky~ KT — KD ) + SOt [YET + (1 - )kl

7+1 i—1
(7.95)
The complex amplification factor for this scheme is
1+ ¢SAt — 2idsin @
G = L i (7.96)
1—(1—)SAt+ 2iAsing
Hence, in order for this scheme to be stable, we must require
(14 9SAH? +42%sin? 0
IG|? = L g = ] (7.97)
[1 — (1 — ¢)SAt]? + 4A%sin” 8
After a little algebra, the stability condition simplifies to
SAt[1+ (- §)SAt] <0 (7.98)
When § < 0, we find
1
At < ——— Pv>3% S<O0
(¥ — IS 2 ,
(7.99)

Unconditionally Stable; ¥ < 3, S<0

When & > 0, upon first inspection, von Neumann stability analysis indicates
this scheme is unstable when ¢y > 1 and that A¢ must have a lower bound

(as opposed to an upper bound) to insure stable computation when ¥ < 1.
However, these results are irrelevant. This is true because the exact solution to
Equation (7.93) is proportional to e5?, and is thus unbounded as t — co. When
this occurs, even if the error is a small fraction of the exact solution, it will also
be unbounded. The requirement |G| < 1 is thus too stringent for an unbounded
function. According to von Neumann, the condition for stability when the exact
solution is unbounded is:

|G| <1+ O(At) (7.100)
With a little rearrangement of terms, Equation (7.97) can be written as

2[1+ (1 — 1)SAY :
[1— (1 —)SAL]2 + 422 sin® 6') St

IGI?=1+ ( (7.101)
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Since the factor proportional to sin® 6 serves only to increase the denominator,
we can omit it and say that

2(1 + (1 — 3)SAY]
[1—(1—)SAL]?2

G2 <1+ ( ) SAt (7.102)

Clearly, the function in parentheses is bounded as At — 0 as long as the de-
nominator doesn’t vanish, so that Equation (7.100) is satisfied provided:

1

M= TTus

S >0 (7.103)

Although this analysis has been done for implicit Crank-Nicolson differenc-
ing of the convective term, the same result holds for explicit methods. While
Equation (7.94) involves k}""l, the terms in an explicit scheme can be rearranged
to preserve its explicit nature. For example, if we use upwind differencing for
the convective term in Equation (7.93), the discretized equation becomes
[1+ySAat — Yot gn 4 Ubtgn |

- oz (7.104)

1— (1—¢)SAt

-1
kj

We now have sufficient information to discuss the most suitable discretization
approximations for source terms in both explicit and implicit methods. If second-
order accuracy is required, as it would be for numerical simulation of an unsteady
flow, ¢y must be 1/2. On the other hand, if only steady-state solutions are needed,
we can take advantage of the fact that using ¢» = 0 when S < 0 and v = 1
when S > 0 yields an unconditionally stable (albeit first-order accurate in time)
scheme. In summary, the following has proven satisfactory for turbulence-model
equations.

Second-Order Time Accuracy — Conditional Stability

| 2
k= =8 (kI+ k0 At € — 105
Sk = 58 (k] + k7)), <15 (7.105)
First-Order Time Accuracy — Unconditional Stability

Sk for S<0
Sk = (7.106)
Sk for S>0

All of the one-dimensional time-marching programs discussed in Appendix C
use Equation (7.106).



7.5. BLOCK-IMPLICIT METHODS 409

7.5 Block-Implicit Methods

The most efficient numerical methods currently available for complex flowfields
are block-implicit methods. They differ from elementary implicit methods in
one very important respect. Specifically, when an elementary implicit scheme is
applied to a coupled set of equations, each equation is solved in sequence. In the
context of a system of equations, this is usually referred to as a sequentially-
implicit method. By contrast, a block-implicit scheme solves all of the equations
simultaneously at each grid point. The block-implicit formulation, generally re-
quiring inversion of block-tridiagonal matrices, entails more computational ef-
fort than a sequentially-implicit method. The additional computation at each
grid point and timestep is usually compensated for by a dramatically improved
convergence rate. Block-implicit solvers can achieve CFL numbers in excess
of 100, and often converge in fewer than 500 timesteps for flows including
boundary-layer separation. For example, using a block-implicit method, a su-
personic two-dimensional shock-separated turbulent flow can be simulated with
80000 grid points and a k-w model on a 3-GHz Pentium-D microcomputer in
about 45 minutes of CPU time. On the same computer, a similar computation
would take about 6 hours using a sequentially-implicit method [Wilcox (1990)]
and 18 hours using an explicit method [Wilcox (1974)].

As in the preceding section, we begin with a brief overview of block-implicit
methods. For simplicity, we focus on a well-known one-dimensional system.
The primary concern in this section is, of course, upon how turbulence-model
source terms impact such methods.

Consider the one-dimensional conservation equations for flow of a viscous,
perfect gas, written in vector form, viz.,

%—?%—-;E(F—FU):O (7.107)
where
p pi 0
Q=< pu », F= pu? + P , F, = Fow (7.108)
pE (PE + P)u Ufze — 4z

The quantities 7., and ¢, dcnote total stress and heat flux, respectively. Also,
the total energy for one-dimensional flow is £ = & + 142 and the pressure is
given by P = (v — 1)pe.

The first step often taken in establishing a block-implicit scheme for this
system of equations is to introduce a first-order backward-difference (implicit
backward-Euler) scheme, which can be written symbolically as follows.

n+1 _ T a n-1
Q____mm Q. [5; (F-—FU)] —0 (7.109)
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Now, we expand the flux vectors F and F,, in a Taylor series about time level n,
wherefore

F .
Frtl =F" + %EAt + O [(At)?] (7.110)
and similarly for F,. Then, using the chain rule of calculus, we have
OF OF 0Q
o Qo (.11b)

where JF/0Q is the inviscid-flux Jacobian matrix. The incremental change in
the dependent-variable vector, AQ, is defined by

AQ=Q" - Q" (7.112)

Since we approximate the unsteady term according to 0Q /8t = AQ/At, we can
rewrite Equation (7.110) as
mn+1 - . 8F 2
| i o +%AQ+O[(At) ] (7.113)
Because of the prominent role played by AQ, this approach is usually referred
to as the delta formulation.
Finally, we must introduce a discretization approximation for the spatial
derivatives of the vectors F and F,. In general, this means forming a matrix
“that multiplies (F — F,), and yields a desired degree of accuracy. Details of
this matrix are unimportant for our discussion, and it is sufficient to introduce
symbolic notation with the understanding that an approximation to spatial differ-
entiation is implied. Thus, we introduce a finite-difference matrix operator, J,
so that

9Q  2Q
where dF, /0Q is the viscous-flux Jacobian matrix. Collecting all of this, we
arrive at the symbolic form of a typical block-implicit method:

1 oF OF, - I
-[Eﬂ?x(%m 8Q)]AQ_ 6. (F™* — F7) (7.115)

where [ is the unit (identity) matrix. The matrix multiplying AQ in Equa-
tion (7.115) is of block-tridiagonal form. In the present example, the blocks are
3 by 3, corresponding to the three equations being solved simultaneously at each
mesh point.

Now, suppose we choose to use a two-equation turbulence model to determine
the Reynolds stress, still considering one-dimensional flow for simplicity. The
following three points must be considered in modifying a block-implicit solution
scheme.

n—+1
[5‘} (F — Fv)] = 5, (F" —F) +6, (aF BF) AQ  (1.114)
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1. Decide whether to solve all equations simultaneously or to solve the model
equations and mean-flow equations sequentially.

2. If the preferred option is to solve all equations simultaneously, determine
the changes to the flux-Jacobian matrices.

3. Make provision for handling source terms.

In principle, solving all equations simultaneously will yield the most rapidly
convergent scheme in the number of iterations, but not necessarily in CPU time.
However, the coupling between the turbulence-model equations and the mean-
flow equations appears to be relatively weak. The primary coupling from the
turbulence-model equations to the mean-flow equations is through the diffusion
terms in the mean-momentum and mean-energy equations, and the eddy viscosity
is usually treated as a constant in forming the viscous-flux Jacobian matrix.
Limited experience to date seems to indicate there is little advantage to solving
all equations simultaneously as opposed to solving the model equations and mean-
flow equations sequentially.

If all equations are solved simultaneously, the basic system of equations for
the k-w model would be as follows:

o0Q 0
— + —(F-F,) = .
n + 8:[:( )=S8 (7.116)
where the dependent-variable and inviscid-flux vectors are
p pu
Iy pu? + P
Q=< pE ;, F={ (pE+ P)u (7.117)
ok puk
pw puw

The viscous-flux and source-term vectors are given by

( 0 ) ( 0 )
3452 + PToa
F, =< ﬁ(%lt‘g%JrﬁTm)_@x ¢y S =9 0 >
(P—+«T"ﬂ-r)% f_’TM%% - B*pwk
L (u+JuTJ%§ J L a (%) .57'.1:3;(%7'3; — Bpw? J
(7.118)

There are two places where the turbulence kinetic energy appears that have
an impact on the flux-Jacobian matrices. Specifically, the specific total energy,
E, should be written as

N
E::e+§u2+k (7.119)
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and the Reynolds-stress tensor is

4 du 2
Tap = =y e — =i 120

Hence, since the vector Q contains pk as one of its elements, the inviscid- and
viscous-flux Jacobian matrices must be evaluated from scratch. Some of the
original 9 elements appropriate for laminar flow or an algebraic model will be
affected by the appearance of £ in E and 7,,. For this system, the inviscid-flux
Jacobian matrix assumes the following form:

0 1 0 0 0
OF (3@ B-ma (-1 (-1 0
%z —[H#iTTu]u [H — (v — 1)a?] vi —('ym—l)'u, 0
—uk k 0 U 0
] —fiw w 0 0 i |
(7.121)
where H is the specific total enthalpy defined by
H=h+ %ﬁ2+k (7.122)

As shown in Equation (7.121), the first two components on row 3 involve H,
and are thus affected by £. In modifying an existing computer program based on
this block-implicit scheme, all that would be required to modify the inviscid-flux
Jacobian matrix components would be to have H appear as indicated, and to
include k£ in the computation of H.

By contrast, if we solve the mean-flow and turbulence-model equations se-
quentially, we retain the original conservation equations [Equation (7.107)]. All
of the flux-Jacobian matrices and, in fact, the entire algorithm remain the same.
To determine k& and w, we then consider the following vector equation:

oq 0
= oo et [l Yo 123
TR L @123
where
ok puk (pteo* T)@
:{ S PR TR SR S S S (7.124)
o plw (utonr)Fe
= i * =
me‘“g—ﬁ k
sz{ “engm e } (7.125)
a(%)ﬂﬂnx}}% — Bpw

Consistent with the block-implicit approach, we linearize the flux and source
vectors according to

o df’“) A (7.126)

f—vn—i—lif—un . .
R R
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Os
9q
where 0s/0q is the source-Jacobian matrix. The flux-Jacobian matrices are

generally much simpler than their counterparts in the mean-flow equations. For
example, the inviscid-flux Jacobian matrix is

F [a 0
3q_[0 u] (7.128)

s=s"+ —Aq (7.127)

This brings us to the all important question of how to handle the source-term
vector s. Several prescriptions are possible, and the primary considerations are
to: maintain numerical stability; achieve rapid convergence rate; and guarantee
that k& and w are positive definite. Wilcox (1991) has found the following lin-
earization of the source terms to be quite satisfactory for the k-w model, within
the framework of MacCormack’s (1985) block-implicit method. Specifically, the
source-term vector is rearranged as follows.

praz e — B+ () BE-
s = X s (7.129)
o (%) prea Bt — 525

Then, treating both 57,94 /0x and w/k as constants in computing the source-
Jacobian matrix, we arrive at

. { Pras Gt — B puwk } Bs [—%’*w 0
a 7

§ = —
(%) PreaSt — Bpw? 0  —26w

T

5q = J (7.130)

In this treatment of the source-term vector the production terms are evaluated
explicitly (i.e., computed at time level n), and the dissipation terms are treated
implicitly (computed at time level n + 1). The block-tridiagonal scheme for the
turbulence-model equations becomes

I af 6f’n 88 _ 1 — T
[E+5‘” (55_ aq)aq] AG= -6, (f" — 1) +s (7.131)

Since 8s/dq is a diagonal matrix and its diagonal elements are always nega-
tive, its contribution is guaranteed to enhance diagonal dominance of the matrix
multiplying Aq. Additionally, Spalart and Allmaras (1992) show that this form
guarantees that k& and w (or € for a k-e¢ model) will always be positive.
However, Spalart and Allmaras also point out that in regions where production
and dissipation are both large and dominate the overall balance of terms in
the equation, this form can result in slow convergence. This appears to be a
more serious problem for the k-¢ model than it is for the k-w model. Wilcox



414 CHAPTER 7. NUMERICAL CONSIDERATIONS

(1991), for example, has shown that the scheme described above yields very
rapid convergence in flows with attached equilibrium boundary layers and in
flows with large regions of separation. The procedure recommended by Spalart
and Allmaras is similar to the procedure recommended for elementary implicit
methods in Equation (7.106). That is, they recommend linearizing the source
term according to

s
=s" — | A 7.132
s =8 +neg(aq) q (7.132)
where the function neg(z) is defined as
negle) =d T T=O (7.133)
S8 =10 z>0 '

The production terms are then included in computing the source-Jacobian matrix.
The neg operator is understood to apply to each element of the resulting (diag-
onal) matrix. Thus, as long as dissipation exceeds production, both production
and dissipation are treated implicitly, and explicitly when production exceeds
dissipation. Huang and Coakley (1992) have successfully applied a linearization
similar to that recommended by Spalart and Allmaras. Gerolymos (1990), Shih
et al. (1993) and Merci et al. (2000) also offer interesting information regarding
stiffness and numerical issues resulting from source terms in turbulence-model
equations.

7.6 Solution Convergence and Grid Sensitivity

Regardless of the application, there is a need for control of numerical accuracy
in CFD [Roache (1990, 1998b)]. This need is just as critical in CFD work as
it is in experiments where the experimenter is expected to provide estimates for
the accuracy of his or her measurements. All CFD texts of any value stress this
need.

7.6.1 Iteration Convergence and Grid Convergence

One key issue determining numerical accuracy is iteration convergence. Most
numerical methods used in CFD applications require many iterations to converge.
The iteration convergence error is defined as the difference between the current
iterate and the exact solution to the difference equations. Often, the difference
between successive iterates is used as a measure of the error in the converged
solution, although this in itself is inadequate. A small relaxation factor can
always give a false indication of convergence [Anderson et al. (1984)]. What-
ever the algorithm is, you should always be careful to check that a converged
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solution has been obtained. This can be done by trying a stricter than usual
convergence criterion, and demonstrating that there is a negligible effect on the
solution. Most reputable engineering journals require demonstration of iteration
convergence and grid independence as a condition for publication. This is not
specific to turbulence-model applications — all of the usual criteria for standard
CFD applications apply.

Specific to turbulence-model computations, the approach to iteration con-
vergence often is more erratic, and typically much slower, than for laminar-
flow computations. A variety of factors including stiffness and nonlinearity of
the equations, as well as the severely stretched finite-difference grids needed
to resolve thin viscous layers, yield less rapid and less monotone convergence.
Ferziger (1989) explains the slow convergence often observed in terms of the
eigenvalues of the matrix system corresponding to the discretized equations. He
notes that any iteration scheme for a linear system can be written as

"t = Agp™ + S (7.134)

where ¢™ is the solution after the n®” iteration, A is a matrix, and S is a source
term. He then shows that the actual solution error is given by

¢n+1 . ¢,n

e — (7.135)

ﬁf)ea:act - ¢n ~

where ¢.;q.+ denotes the exact solution to the discretized equations and ).,
is the largest eigenvalue of the matrix A. Of course, all eigenvalues of A must
be less than 1 for the solution to converge. This result shows that the solution
error is larger than the difference between iterates. Furthermore, the closer Ay, qx
is to 1, the larger the ratio of solution error to the difference between iterates. In
other words, the slower the rate of convergence of the method, the smaller the
difference between iterates must be to guarantee iteration convergence.

A second key issue is grid convergence or grid independence. Because of
the finite size of finite-difference cells, discretization errors exist that represent
the difference between the solution to the difference equations and the exact
(continuum) solution to the differential equations. It is important to know
the magnitude of these discretization errors and to insure that a fine enough grid
has been used to reduce the error to an acceptable level,

As with iteration convergence, all CFD work should demonstrate grid con-
vergence, regardless of what equations are being solved. In most engineering
journals, it is no longer sufficient to publish results performed on a single fixed
grid. While grid sensitivity studies should be done for all CFD work, they
are even more crucial for turbulence-model computations because of the need
to separate numerical error from turbulence-model error. This issue came into
sharp focus at the 1980-81 AFOSR-HTTM-Stanford Conference on Complex
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Turbulent Flows [see Kline, Cantwell, and Lilley (1981)]. Clearly, no objective
evaluation of the merits of different turbulence models can be made unless the
discretization error of the numerical algorithm 1s known.

7.6.2 Richardson Extrapolation

The best known way to demonstrate grid convergence is to repeat a computation
on a grid with twice as many grid points, and compare the two solutions. If
computer resources are unavailable to facilitate a grid doubling, a grid halving is
also appropriate, although the error bounds will not be as sharp. Using results for
two different grids, techniques such as Richardson extrapeolation [see Roache
(1998b)] can be used to determine discretization error. This method is very
simple to implement, and should be used whenever possible.

For a second-order accurate method with central differences, Richardson ex-
trapolation assumes the error, £y = Qeract — O, Where ¢, denotes the solution
when the grid-point spacing is h, can be expanded as a Taylor series in A,
wherefore

En =exh® +eqht +egh® + - - (7.136)

Note that for three-point upwind differences the leading term is still exh?, but
the next term is egh?, and Richardson extrapolation is only O(h®) rather than
O(h*). By hypothesis, the ¢; are, at worst, functions of the coordinates, but are
nevertheless independent of h. Now, if we halve the number of grid points so
that & is doubled, the error 1s given by

Eop = 4eah? + 16e4h® + 64egh® + - - (7.137)

For small values of h, we can drop all but the leading terms, whence the dis-
cretization error is given by

1 .
Ey =~ §(¢h — ®a1,) (7.138)

Equation (7.138) provides an excellent estimate of the difference between the
exact continuum solution and ¢,. The terminology “extrapolation”™ simply re-
flects the fact that we can use our pair of solutions to extrapolate to the continuum
solution by writing

4 1
¢exact = Ql’h + Eh, ~ gth - §¢2h (7139)

As a final comment, Richardson extrapolation has limitations. First, if it is
applied to primitive variables such as velocity and internal energy, its implications
regarding momentum and energy conservation may be inaccurate. Second, the
method implicitly assumes the solution has continuous derivatives to all orders.
Hence, its results are not meaningful near shock waves or turbulent/nonturbulent
interfaces of the type discussed in Subsection 7.2.2,
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7.6.3 Grid Convergence Index

As noted by Roache (1998b), Richardson extrapolation is not limited to doubling
or halving the grid-point spacing. For the generalized theory of Richardson
extrapolation, we write

¢h - ¢1'h

‘;be:z:act ~ ¢)h + P 1

(7.140)
where p is the order of the finite-difference scheme and r is the grid-refinement
ratio. By definition, if we halve the size of the grid-point spacing, then r = 1/2
and doubling the size corresponds to r = 2.

It is a straightforward matter to use Richardson extrapolation on two grids that
differ in cell size by a factor of 2 because the grid-point locations on the coarse
grid are identical to those on the fine grid at every other point. Nevertheless, the
method applies to any value of r. Since the solutions have to be compared at
the same physical point, interpolation is needed on one of the grids to establish
solution values at the same points for comparison.

Building on Richardson extrapolation, Roache (1998b) has developed the
Grid Convergence Index (GCI) to help establish a uniform method for reporting
the estimated error in a computation. By definition,

|€r| 6 — dn — Grn
r— 1.° § Ph

The quantity €, is the fractional error for the grid with spacing k. If two grids
are used, Roache recommends using F; = 3. This will provide a conservative
estimate of solution error for virtually all fluid-flow problems. If three different
grids are used, F, = 1.25 is appropriate. In the latter case, the three-grid
sequence of computations can be used to first establish the actual order of the
method, p. Then, the index can be computed to provide a measure of how
accurate the solutions on the finest grids are.

The GCI is especially useful as a measure of how accurately key quantities
such as lift and drag coefficients, skin friction and surface-pressure coefficients
have been computed. That is, its use is not confined to an overall measure of
solution errors at specific grid points. It can be applied to any key feature of the
solution that is of particular interest.

To determine the order of a finite-difference method, we observe that if it is
ph-order accurate, then the solution error will change according to

GCI = F,

(7.141)

Ej, ~ Ch?, C = constant (7.142)

The value of p is the slope of Ej, as a function of £ on a log-log plot. At least
three grids are needed to accurately determne p. It is simplest if the three grids
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have been done with constant r. That is, if the finest grid has spacing h, the
next to finest would have rh and the coarsest would have r2h. In this case, the
value of p can be determined as follows.

p= n |(¢’"h — quQh)/(qsrh - Qbh)l

Enr

(7.143)

If r is not constant, computing p is a bit more complicated and typically requires
an iterative solution [see Roache (1998b)].

As an example, consider the results from a grid-convergence study shown
in Table 7.4. The computation was done on a uniformly spaced mesh with N
points that has been doubled from one grid to the next so that r = 2. Since the
table includes information for four grids, we can apply Equation (7.143) twice,
first to the 32-64-128 trio and then to the 64-128-256 results.

Table 7.4: Grid Convergence Study Results.

LN | h [ ¢ [ » | en | GCI |
32 | 0.03125000 | 1.08359 — — —
64 | 0.01562500 | 1.00539 - —7.7780- 1072 | 0.648%

128 | 0.00781250 | 1.00034 | 3.95 | —5.0482-10~2 | 0.042%
256 | 0.00390625 | 1.00002 | 3.98 | —3.1999.10—% | 0.003%

Clearly, p is very close to 4 and we conclude that the method used in this
computation is 4*”-order accurate. Hence, in applying the GCIL, Equation (7.141)

becomes
|€n]

rt—1
Normally expressed as a percent, the GCI provides an excellent estimate of the
error band that can be placed on a fine-grid solution.

GCI=1.25

(7.144)

7.6.4 Near-Wall Grid-Point Spacing

There is another grid-related factor affecting solution accuracy. In order to re-
solve thin viscous layers, for example, highly stretched grids are normally used.
Conventional central-difference approximations are only first-order accurate on
such a grid, and care must be taken to account for this. Also, the location of
the grid point nearest the surface has a nontrivial effect on the accuracy of skin
friction and surface heat flux. Wilcox (1989), for example, has found that grid-
insensitive computations using wall functions that account for pressure gradient
[e.g., Equation (5.126)] can be obtained with block-implicit methods provided

10 < yf <100,  (wall functions) (7.145)
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where y3 is the sublayer-scaled value of the first grid point above the surface.
This range appears to hold for boundary-layer computations as well {Chambers
and Wilcox (1977)], again provided pressure gradient is accounted for. When
turbulence-model equations are integrated through the viscous sublayer, many
researchers have shown that it is imperative to require

¥ <1, (integration through the sublayer) (7.146)

For shock separated flows, particularly at hypersonic speeds, Marvin and Huang
(1996) recommend the more-stringent condition y; < 0.3. When these limits
are not adhered to, consistent with the discussion in Subsection 7.2.1, solution
errors throughout the boundary layer generally are large.
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Problems

7.1 For a Mach 3 turbulent flat-plate boundary layer, it is a fact that Mc;Re;, =~ Reg+.

(@) In the viscous sublayer, the appropriate scaling for the specific dissipation rate is
w ~ u?/v. Noting that u, =~ U./Cy, express the ratio of £giss 10 fwave a5 a
function of Res« in the sublayer.

(b) In the defect layer, the appropriate scaling for the specific dissipation rate is given
by w ~ u,/A where A = U&* /u,. Express the ratio of tgiss t0 twave as a
function of Res~ in the defect layer.

(¢} Comment on the implications of your estimates in Parts (a) and (b).

7.2 Determine whether or not the following systems of equations are stiff with regard to
the specified initial conditions.

(a)
atvt=l s (8 )=--{8 )
dt | v 4 3]y J 4(0) y(0)
dfa _[—3 1 {;r { £(0) __{ x(0)
dat | v [ 4 -3 v [’ y(0) [ y(0)

7.3 Consider the high-Reynolds-number k-w model’s near-wall variation of specific dis-
sipation rate, w, for a rough wall, i.e.,

()

Loy o = Bowr
[1 + Ay]2 ’ N 6oy

=

(a) Assuming equally-spaced grid points, show that the central-difference approxima-
tion to d%w/dy? at the first grid point above the surface (i.e., at y = Ay) is given

by
dPw ) d*w
= | ~ ®(Ay) ( —)
3 2
( dy Z dy exact
where ) , )
i+ AAY)“[1 +2AAy + 2(AA
B(Ay) = LHALYL +244y + 5(AAy)]
1+ 2A4Ay]2
(b) Assuming a slightly-rough wall so that w,, = 40000%,{»‘63 and using 3, = 0.0708,
show that .
Ay
AAy = 21.7 s

(c) Determine the percentage error introduced by the central-difference approximation
in computing d°w/dy” when we assume a hydraulically-smooth wall with kI = 5,
andset Ay = 1/8.



PROBLEMS 421

7.4 This problem shows that while trapezoidal-rule integration is second-order accurate
for a piecewise continuous function with a discontinuous first derivative, the truncation
error depends upon placement of the nodes. Using the trapezoidal rule, the integral of a
function f(x) is

b N
[.' f(z)dz ~ kzzj fe) Az + 5(f(a) — FB)Ax

where
b—a

Tk = kAzx and Ar =

Consider the foliowing piecewise continuous function f(x):

2, 0<z<1
f(:“)_{ I, l<z<?2

Note that a node lies at x = 1 only for even values of N.

(a) Venfy that the exact integral of f(z) for x ranging from 0 to 2 is

2
IE/ f(:.c)da‘:%

(b) Assuming N is odd show that the trapezoidal rule yields

4 1
~ - ——Az}
d 3[1 16 (A%)

(c) Assuming N is even show that the trapezoidal rule yields

4 1 2]
= = |1 — =
I 3 [ -+ S(Aaf‘)

M
HINT: Use the fact that Z k= %M(M + 1)(2M +1).
| -

7.5 Consider the mixing-length model with #,.;. = ad, where « is a constant and & is
shear-layer thickness.

(a) Assuming that dU/dy > 0, verify that according to the Rubel-Melnik transforma-
tion,
dau

3
(b) For flow near a turbulent/nonturbulent interface with constant entrainment velocity,

V' < 0, determine the velocity difference, Ue — U, as y — 4. Express your answer
as a function of |V|, o and y/é.

Y = gmi.:r
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7.6 Verify that, with the stress limiter excluded, the solution for the Wilcox (2006) k-w
model at a turbulent/nonturbulent interface is given by Equations (7.41). To do this, begin
with the interface equations, which (with vy = k/w) are as follows.

2
ayv d du dk at N « d dk
de dJ‘ ( Tdy) ] Va’a = Ut (E’y_) —,8 Lb’k+0' a; [VTdy]

2
VE - ¥ (é{.—{.) . ﬁowz Ido dk dw _+_ 0'._.(.{. [VT'@]

dy dy w dy d'y dy dy
(a) Introduce the Rubel-Melnik transformation and show that these equations transform
to

dU _ d°U dk dU\® .. .d%%k

; Ve={—| -8k 40" —

dg ~ dg? dg ( d§ ) dg?

dw  w (dU Odo dk dw d*w

VE— (dg) ~ Bokw + kd5d§+“d§2

(b) Assume a solution of the form U, —U ~ Ue*VE k ~ Ke*VE and w ~ WeP-VE
and determine the constants A, Ax and A,. NOTE: Use the fact that V' < 0 in
deriving your solution.

(c) Using vour solution from Part (b), solve for n., nx and n.,.

7.7 Verify that, with the stress limiter included, the solution for the Wilcox (2006) k-w
model at a turbulent/nonturbulent interface is given by Equations (7.41) with the exception
that now n. = 7. To do this, begin by noting that the interface equations are:

SAU_ d (VB V_ .d [kdk
dy y Olz"rn ’ N nm d w dy
dw

do _ yomdkdo | d [kdw
dy Cgm w dy dy dy |w dy

{a) Introduce the Rubel-Melnik transformation with v+ = k/w and show that these
equations transform to

o]~

aU  /pB* dk dk  /P* , |dU _— L d2k
Ve " Cma V& chmk’ &P gm
dw \/6"‘ crdo dk dw d*w
Y e fdg Thkt S aE T

(b) Assume a solution of the form U, — U ~ Ue *VE k ~ Ke* V& andw ~ Wer=VE
and determine the constants A, Ar and A,,. NOTE: Use the fact that V' < 0 in
deriving your solution.

(c) Using your solution from Part (b), solve for n,, nx and n,,.



